
Business Process Management

Mathias Weske

Business
Process
Management

Concepts, Languages, Architectures

Second Edition

Mathias Weske
Hasso Plattner Institute (HPI)
Universität Potsdam
Potsdam, Germany

ISBN 978-3-642-28615-5 ISBN 978-3-642-28616-2 (eBook)
DOI 10.1007/978-3-642-28616-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012938099

ACM Classification (1998): J.1, H.4.1, D.2.2

© Springer-Verlag Berlin Heidelberg 2007, 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

For DJET

Foreword

Business Process Management (BPM) is a “hot topic” because it is highly rel-
evant from a practical point of view while at the same it offers many challenges
for software developers and scientists. Traditionally information systems used
information modeling as a starting point, i.e., data-driven approaches have
dominated the information systems landscape. However, over the last decade
it has become clear that processes are equally important and need to be sup-
ported in a systematic manner. This resulted in a “wave” of workflow manage-
ment systems in the mid-nineties. These systems aimed at the automation of
structured processes. Therefore, their application was restricted to only a few
application domains. However, the basic workflow concepts have been adopted
by different types of “process-aware” information systems. BPM addresses the
topic of process support in a broader perspective by incorporating different
types of analysis (e.g., simulation, verification, and process mining) and link-
ing processes to business and social aspects. Moreover, the current interest in
BPM is fueled by technological developments (service oriented architectures)
triggering standardization efforts (cf. languages such as BPMN and BPEL).

Given the huge interest in BPM it is good that Mathias Weske took on
the challenge to write a comprehensive book on BPM. The textbook covers
the broad space of BPM in-depth. Most books on BPM are rather superficial
or closely linked to a particular technology. In this book the topic is viewed
from different angles without becoming superficial. Therefore, it is a valuable
contribution to BPM literature.

The book “Business Process Management: Concepts, Languages, and Ar-
chitectures” is motivated by practical challenges and is grounded in both
computer science and business administration. The subtitle of the book ade-
quately describes its scope. Unlike many other books in this space the focus
is not on a particular notation or XML syntax. Instead the book focuses on
the essential concepts. Different process languages are described (Petri nets,
EPCs, Workflow nets, YAWL, BPMN, etc.) on the basis of these concepts.
Moreover, the different languages are characterized and related using meta
models. This is very important because it provides a view on the essence of

VII

VIII Foreword

business process models and prepares the reader for new languages and stan-
dards that will emerge in the future. Interestingly, the book also contains a
chapter on process analysis. Here different soundness notions relevant for pro-
cess verification are described and related. The last part of the book is related
to architectures and methodologies. Two critical topics are discussed in detail:
flexibility and service composition. Process flexibility is very important for the
application of BPM in less structured domains. Through service composition
a bridge is established between the service-oriented architecture and workflow
technology.

The book provides an excellent introduction into BPM. On the one hand,
the book covers many topics and links concepts to concrete technologies. On
the other hand, the book provides formal definitions and relates things through
meta modeling. This makes it a superb textbook for students in both com-
puter science and business administration. Moreover, it is also a very useful
book for practitioners since it provides a comprehensive coverage of BPM in-
dependently of industry hypes around workflow management, business process
management, and service-oriented architectures. Therefore, I expect that this
book will help organizations in addressing the BPM topic in a more mature
way.

Eindhoven University of Technology, Prof. dr.ir. Wil van der Aalst
July 15th, 2007

Preface to Second Edition

Since the first edition of this book was published in late 2007, the business pro-
cess management area has enjoyed an amazing development, both in industry
and academia. To organize change and to achieve higher degrees of automa-
tion, more and more companies and public administrations put processes in
the centre of their attention.

While changing business requirements, paired with cost and time pressure
are the driving forces of this development, important factors are dependable
standards, sophisticated tools, and well educated people. Many young profes-
sionals graduating in computer science, business engineering, or related fields
have enjoyed an education in business process management, focusing on com-
plementary topics that range from technical aspects to business aspects.

The business process management area is also fueled by the BPM Aca-
demic Initiative, which provides a professional process modeling and analysis
tool free of charge for users in teaching and academic research. Today more
than ten thousand students, lecturers, and researchers use this platform. I
thank my colleagues in the core team for their involvement, namely Wil van
der Aalst, Frank Leymann, Jan Mendling, Michael zur Mühlen, Jan Recker,
Michael Rosemann, and Gero Decker. Also in the name of the platform users,
a special thanks to the Signavio team for providing this service to the BPM
community.

Just like the first edition, this book does not contain any teaching exercises.
However, students and lecturers working with this book can register at the
BPM Academic Initiative at academic.signavio.com to access a comprehensive
set of teaching material related to this book, and beyond. The material is
published under a Creative Commons license, allowing lecturers to use and
adapt the exercises according to their syllabi. All figures of this book can be
downloaded from bpm-book.com.

It is interesting to see that the increasing adoption of business process
technology poses interesting challenges to the research community. One of
these challenges is to closer relate process models with the actual execution
of the business processes. Since about a decade, an impressive body of work

IX

http://academic.signavio.com
http://bpm-book.com

X Preface to Second Edition

was done in process mining and business process intelligence. There are fur-
ther topics that have emerged as challenges in real-world settings, such as
compliance checking of process models, process model abstraction, and the
management of process repositories, where issues like behavioural similarity
and indexing of process models are investigated. Unfortunately, a text book
on business process management cannot cover all these topics.

Still, this second edition contains a number of enhancements and modi-
fications. The increasing importance of the BPMN in Version 2 is matched
by extending significantly the respective section in the process orchestrations
chapter. I also added a section on BPMN in the process choreographies chapter
to discuss the language constructs for expressing process interactions, conver-
sations, and choreographies. A concrete consistency criterion for process or-
chestrations implementing behavioural interfaces is introduced, which makes
the discussion of the consistency property more tangible. In the process prop-
erties chapter, I extended the section on data in processes, which now also
covers properties of a business process with respect to the data objects it
works on. To improve the integration of the business process management
methodology with the concepts introduced in the first part of the book, I
rewrote the methodology chapter. It now discusses the relationships between
business processes in much more detail and it also introduces performance
indicators for business processes and concepts on how to measure them.

In addition to these extensions of the book, there are many minor changes,
which, I hope, will increase its readability and soundness. Quite a number of
them were triggered by readers, whose feedback I am happy to acknowledge.
Thanks to all members of my research group at HPI; your comments and
remarks on earlier versions of this manuscript have helped improving the book.
Special thanks to Matthias Kunze and Alexander Lübbe for their feedback,
mainly on the BPMN sections. I would also like to thank the Berliner BPM
Offensive for providing me with the stencil set of the BPMN shapes. The
shapes are much nicer than I could ever do them, they helped a lot!

Potsdam, March 2012 M.W.

Preface

The extensive ground covered by business process management is divided
between representatives from two communities: business administration and
computer science. Due to the increasingly important role of information sys-
tems in the realization of business processes, a common understanding of and
productive interaction between these communities are essential.

Due to different viewpoints, however, the interaction between these com-
munities is seldom seamless. Business administration professionals tend to
consider information technology as a subordinate aspect in business process
management that experts will take care of. On the other hand, computer sci-
ence professionals often consider business goals and organizational regulations
as terms that do not deserve much thought, but require the appropriate level
of abstraction.

This book argues that we need to have a common understanding of the
different aspects of business process management addressed by all communi-
ties involved. Robust and correct realization of business processes in software
that increases customer satisfaction and ultimately contributes to the com-
petitive advantage of an enterprise can only be achieved through productive
communication between these communities.

By structuring business process management, this book aims at providing
a step towards a better understanding of the concepts involved in business
process management—from the perspective of a computer scientist.

If business persons find the book too technical, software people find it too
non-technical, and formal persons find it too imprecise, but all of them have
a better understanding of the ground covered by our discipline, this book has
achieved its goal.

The Web site bpm-book.com contains additional information related to this
book, such as links to references that are available online and exercises that
facilitate the reader’s getting into deeper contact with the topics addressed.
Teaching material is also available at that Web site.

XI

XII Preface

This book is based on material used in the business process management lec-
tures that the author has conducted in the Master’s and Bachelor’s program
in IT Systems Engineering at the Hasso Plattner Institute for IT Systems En-
gineering at the University of Potsdam. I am thankful for the critical remarks
by my students, who encouraged me to shape the content of my lectures,
which ultimately led to this book.

Many people contributed to this book. First of all, I like to thank my col-
league researchers in business process management for developing this area
in recent years, most prominently Wil van der Aalst, Alistair Barros, Mar-
lon Dumas, Arthur ter Hofstede, Axel Martens, and Manfred Reichert. The
chapter on case handling is based on joint work with Wil van der Aalst and
Dolf Grünbauer. I am grateful to Barbara Weber for her detailled comments
on the manuscript that have led to improvements, mainly in the chapter on
process orchestrations.

I acknowledge the support of the members of my research group at Hasso
Plattner Institute. Gero Decker, Frank Puhlmann, and Hilmar Schuschel were
involved in the preparation of the assignments of the business process man-
agement lectures. Together with Dominik Kuropka and Harald Meyer, they
provided valuable comments on earlier versions of the manuscript. Special
thanks to Gero Decker for contributing the first version of the process chore-
ographies chapter.

The lion’s share of my acknowledgements goes to my family, and foremost
to Daniela.

Potsdam, July 2007 M.W.

Contents

Part I Foundation

1 Introduction . 3
1.1 Motivation and Definitions . 4
1.2 Business Process Lifecycle . 11
1.3 Classification of Business Processes . 17
1.4 Goals, Structure, and Organization . 21

2 Evolution of Enterprise Systems Architectures 25
2.1 Traditional Application Development . 26
2.2 Enterprise Applications and their Integration 28
2.3 Enterprise Modelling and Process Orientation 39
2.4 Workflow Management . 49
2.5 Enterprise Services Computing . 57
2.6 Summary . 65
Bibliographical Notes . 67

Part II Business Process Modelling

3 Business Process Modelling Foundation . 73
3.1 Conceptual Model and Terminology . 73
3.2 Abstraction Concepts . 75
3.3 From Business Functions to Business Processes 78
3.4 Activity Models and Activity Instances . 83
3.5 Process Models and Process Instances . 87
3.6 Process Interactions . 96
3.7 Modelling Process Data . 98
3.8 Modelling Organization . 102
3.9 Modelling Operation . 107
3.10 Business Process Flexibility . 111

XIII

XIV Contents

3.11 Architecture of Process Execution Environments 120
Bibliographical Notes . 123

4 Process Orchestrations . 125
4.1 Control Flow Patterns . 126
4.2 Petri Nets . 149
4.3 Event-driven Process Chains . 159
4.4 Workflow Nets . 169
4.5 Yet Another Workflow Language . 182
4.6 Graph-Based Workflow Language . 200
4.7 Business Process Model and Notation . 206
Bibliographical Notes . 241

5 Process Choreographies . 243
5.1 Motivation and Terminology . 244
5.2 Development Phases . 247
5.3 Process Choreography Design . 249
5.4 Process Choreography Implementation . 260
5.5 Service Interaction Patterns . 267
5.6 Let’s Dance . 275
5.7 Choreography Modelling in BPMN . 279
Bibliographical Notes . 290

6 Properties of Business Processes . 293
6.1 Data Dependencies . 294
6.2 Object Lifecycle Conformance . 296
6.3 Structural Soundness . 299
6.4 Soundness . 300
6.5 Relaxed Soundness . 308
6.6 Weak Soundness . 313
6.7 Lazy Soundness . 318
6.8 Soundness Criteria Overview . 326
Bibliographical Notes . 328

Part III Architectures and Methodologies

7 Business Process Management Architectures 333
7.1 Workflow Management Architectures . 333
7.2 Flexible Workflow Management . 338
7.3 Web Services and their Composition . 343
7.4 Advanced Service Composition . 352
7.5 Data-Driven Processes: Case Handling . 361
Bibliographical Notes . 370

Contents XV

8 Business Process Management Methodology 373
8.1 Dependencies between Processes . 373
8.2 Methodology Overview . 376
8.3 Phases in Detail . 378
Bibliographical Notes . 387

References . 389

Index . 399

Part I

Foundation

1

Introduction

Business process management has received considerable attention recently by
both business administration and computer science communities.

Members of these communities are typically characterized by different ed-
ucational backgrounds and interests. People in business administration are
interested in improving the operations of companies. Increasing customer sat-
isfaction, reducing cost of doing business, and establishing new products and
services at low cost are important aspects of business process management
from a business administration point of view.

Two communities in computer science are interested in business processes.
Researchers with a background in formal methods investigate structural prop-
erties of processes. Since these properties can only be shown using abstrac-
tions of real-world business processes, process activities are typically reduced
to letters. Using this abstraction, interesting observations on structural prop-
erties of business processes can be made, which are very useful for detecting
structural deficiencies in real-world business processes.

The software community is interested in providing robust and scalable
software systems. Since business processes are realized in complex information
technology landscapes, the integration of existing information systems is an
important basis for the technical realization of business processes.

The goal of this book is to narrow the gap between these different points of
view and to provide a step towards a common understanding of the concepts
and technologies in business process management.

The introductory chapter looks at the motivation for business process man-
agement from a high-level point of view. The background of business process
management is explained, and major concepts and terms are introduced. An
example featuring an ordering process is used to illustrate these concepts. The
phases in setting up and maintaining business process management applica-
tions are discussed. A classification of business processes and an overview on
the structure of this book complete this chapter.

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 1,
© Springer-Verlag Berlin Heidelberg 2012

3

http://dx.doi.org/10.1007/978-3-642-28616-2_1

4 1 Introduction

1.1 Motivation and Definitions

Business process management is based on the observation that each product
that a company provides to the market is the outcome of a number of activi-
ties performed. Business processes are the key instrument to organizing these
activities and to improving the understanding of their interrelationships.

Information technology in general and information systems in particular
deserve an important role in business process management, because more and
more activities that a company performs are supported by information sys-
tems. Business process activities can be performed by the company’s employ-
ees manually or by the help of information systems. There are also business
process activities that can be enacted automatically by information systems,
without any human involvement.

A company can reach its business goals in an efficient and effective manner
only if people and other enterprise resources, such as information systems, play
together well. Business processes are an important concept to facilitating this
effective collaboration.

In many companies there is a gap between organizational business aspects
and the information technology that is in place. Narrowing this gap between
organization and technology is important, because in today’s dynamic mar-
kets, companies are constantly forced to provide better and more specific
products to their customers. Products that are successful today might not be
successful tomorrow. If a competitor provides a cheaper, better designed, or
more conveniently usable product, the market share of the first product will
most likely diminish.

Internet-based communication facilities spread news of new products at
lightning speed, so traditional product cycles are not suitable for coping with
today’s dynamic markets. The abilities to create a new product and to bring
it to the market rapidly, and to adapt an existing product at low cost have
become competitive advantages of successful companies.

While at an organizational level, business processes are essential to under-
standing how companies operate, business processes also play an important
role in the design and realization of flexible information systems. These in-
formation systems provide the technical basis for the rapid creation of new
functionality that realizes new products and for adapting existing functional-
ity to cater to new market requirements.

Business process management is influenced by concepts and technologies
from different areas of business administration and computer science. Based
on early work in organization and management, business process management
has its roots in the process orientation trend of the 1990s, where a new way
of organizing companies on the basis of business processes was proposed.

In their seminal book Reengineering the Corporation, Michael Hammer
and James Champy advocate the radical redesign of the business processes
of a company. They define a business process as a collection of activities that

1.1 Motivation and Definitions 5

take one or more kinds of input and create an output that is of value to the
customer.

While it has been argued that a radical redesign of business processes is,
in many cases, not the best choice and that evolutionary improvements are
more promising, the business process definition by Hammer and Champy is a
good starting point for our investigations.

This definition puts emphasis on the input/output behaviour of a business
process by stating its precondition (inputs) and its postcondition (output).
The process itself is described in an abstract way by a collection of activi-
ties. Assuming that the term “collection” neither implies an ordering of the
activities nor any other execution constraints, the definition by Hammer and
Champy is quite liberal with regard to the process aspect.

Execution constraints between activities are identified by Davenport, who
defines a business process as “a set of logically related tasks performed to
achieve a defined business outcome for a particular customer or market.”

The term “logically related” puts emphasis on the process activities, while
associating the outcome of a business process with a requestor of a product,
that is, a customer. Davenport also considers the relationship of process ac-
tivities, including their execution ordering, by defining a business process as
“a specific ordering of work activities across time and place, with a beginning,
an end, and clearly identified inputs and outputs.” He continues, “business
processes have customers (internal or external) and they cross organizational
boundaries, that is, they occur across or between organizational subunits.”

Based on these characterizations of business processes, we adopt the fol-
lowing definition.

Definition 1.1 A business process consists of a set of activities that are per-
formed in coordination in an organizational and technical environment. These
activities jointly realize a business goal. Each business process is enacted by
a single organization, but it may interact with business processes performed
by other organizations. �

After a first consideration of business processes, their constituents, and their
interactions, the view is broadened. Business process management not only
covers the representation of business processes, but also additional activities.

Definition 1.2 Business process management includes concepts, methods,
and techniques to support the design, administration, configuration, enact-
ment, and analysis of business processes. �

The basis of business process management is the explicit representation of
business processes with their activities and the execution constraints between
them. Once business processes are defined, they can be subject to analysis,
improvement, and enactment. These aspects of business process management
will be introduced in Section 1.2.

6 1 Introduction

Traditionally, business processes are enacted manually, guided by the
knowledge of the company’s personnel and assisted by the organizational reg-
ulations and procedures that are installed.

Enterprises can achieve additional benefits if they use software systems
for coordinating the activities involved in business processes. These software
systems are called business process management systems.

Definition 1.3 A business process management system is a generic software
system that is driven by explicit process representations to coordinate the
enactment of business processes. �

The definitions introduced so far are illustrated by a sample business process.
Because of its clarity and limited complexity, a simple ordering process is
well suited. In the ordering process, an order is received, an invoice is sent,
payment is received, and the ordered products are shipped.

This textual representation lists the activities of the business process, but
it does not make explicit the ordering according to which these activities
are performed. Graphical notations are well suited to expressing orderings
between activities of a business process.

The ordering process of a reseller company is shown in Figure 1.1. The
process consists of a set of activities performed in a coordinated manner. The
coordination between the activities is achieved by an explicit process repre-
sentation using execution constraints. The process starts with the company
receiving and checking an order, followed by activities in concurrent branches.
In one branch, the invoice is sent and the payment is received; in the other
branch, the products are shipped. When both branches complete their ac-
tivities, the order is archived, and the business process terminates. At this
point in time, the reseller has processed an incoming order, including ship-
ping the product and receiving the payment, which realizes a business goal of
the reseller.

While there are several graphical notations for business process modelling,
their essence is quite similar. This introductory chapter uses a simplified vari-
ant of the Business Process Model and Notation, BPMN. In this notation,
activities are represented by rounded rectangles, marked with the name of
the activity. Events can be used to mark the start and end of the process.
Events are represented by circles. An event can be marked with a symbol
indicating the type of the event. In the example, we use a start event with an
envelope mark (“message start event” in BPMN) to represent that the process
starts on receiving a message. Execution ordering of activities is expressed by
directed arrows.

Branching and joining of nodes is represented by diamonds that can be
marked with different symbols. In the sample process shown in Figure 1.1, a
diamond with a plus sign, a single incoming arc, and multiple outgoing arcs
represents a parallel split, which means that the follow-up activities can be
executed concurrently. Concurrent activities can be executed in any order,
and any overlap in the execution time of concurrent activities is allowed.

1.1 Motivation and Definitions 7

The same symbol with multiple incoming arcs and a single outgoing arc
is the respective join node, merging the concurrent branches. In the example,
this join node makes sure that the archiving of the order can only be started
once both concurrent branches have completed. The Business Process Model
and Notation will be discussed in detail in Chapter 4.

Fig. 1.1. Simple ordering process of reseller

The ordering process shown can be used as a blueprint that allows the
reseller company to organize its work. The company will receive many orders,
each of which can be processed as described in the blueprint. This observation
gives rise to important concepts in business process management: business
process models and business process instances.

The blueprint shown in Figure 1.1 is the business process model. Each
order that is processed according to this model is a business process instance.
Therefore, there is a one-to-many relationship between business process mod-
els and business process instances. Conceptual models of business process
models and instances will be the subject of Chapter 3.

Definition 1.4 A business process model consists of a set of activity models
and execution constraints between them. A business process instance repre-
sents a concrete case in the operational business of a company, consisting of
activity instances. Each business process model acts as a blueprint for a set
of business process instances, and each activity model acts as a blueprint for
a set of activity instances. �

If no confusion is possible, the term business process is used to refer to
either business process models or business process instances. Analogously,
activity is used to refer to either activity models or activity instances.

Business process models are the main artefacts for implementing business
processes. This implementation can be done by organizational rules and poli-
cies, but it can also be done by a software system, using a business process
management system. In this case, according to Definition 1.3, the software
system is driven by explicit process representations.

The business process model shown in Figure 1.1 can be used to configure
the process management system accordingly. The resulting system makes sure
that all business process instances are executed as specified in the business

8 1 Introduction

process model and that, for instance, after receiving an order, the Send Invoice
and the Ship Products activities are executed concurrently.

Since business processes are performed in a single organization by defini-
tion, the ordering of activities can be controlled by a business process manage-
ment system as a centralized software component run by the reseller company.
This centralized control is very similar to a conductor who centrally controls
the musicians in an orchestra; therefore, business processes are also called
process orchestrations. Chapter 4 will investigate languages to express process
orchestrations.

The business process model shown in Figure 1.1 represents activities that a
reseller performs to process an incoming order. This business process interacts
with the business process of a corresponding buyer. The buyer sends an order,
receives payment information, settles the invoice, and receives the ordered
products.

Fig. 1.2. Ordering process of a buyer

The business process of the buyer is shown in Figure 1.2. It starts with its
placing an order, before two concurrent branches are opened. In one branch,
the invoice is received and the invoice is settled. In the other branch, the
product is received. When both branches complete, the business process of
the buyer completes.

Definition 1.1 indicates that each business process is enacted by one organi-
zation, and that business processes can interact with each other. The business
processes of the reseller and the buyer can, for instance, interact with each
other in the following way.

1. The buyer sends an order message to the reseller.
2. The reseller receives that message in a start event. The order information

is then extracted from the message, and order processing starts.
3. The reseller sends an invoice and ships the ordered products.
4. The buyer receives the invoice.
5. The buyer settles the invoice.
6. Finally, the buyer receives the ordered products.

The interacting business processes are shown in Figure 1.3. Interacting activi-
ties of the reseller business process and the buyer business process are related

1.1 Motivation and Definitions 9

to each other by dotted arcs, representing the flow of messages. Message flow
can represent electronic messages sent and received, but also the transport of
physical objects, such as ordered products.

The interactions of a set of business processes are specified in a process
choreography. The term choreography indicates the absence of a central agent
that controls the activities in the business processes involved. The interaction
is only achieved by sending and receiving messages. In order to realize correct
interactions, the interacting business processes need to agree on a common
choreography before they start interacting.

This situation is similar to dancers who need to agree on a common chore-
ography before the show starts. During the performance, however, each dancer
behaves autonomously but in line with his or her part in the choreography.
Process choreographies will be discussed in detail in Chapter 5.

The representation of the business process choreography is shown in Fig-
ure 1.3; it also represents start events and end events of the interacting busi-
ness processes, marked by circles.

This process choreography allows for multiple concrete implementations,
in which the degree of software support can differ. Traditional ways of ordering
goods that are not supported by information systems are well captured by this
business process interaction. A buyer browses a paper catalogue of a reseller,
selects a set of products, fills a postcard with ordering information, and sends
the postcard to the reseller.

Fig. 1.3. Interacting business processes form process choreography

This postcard effectively implements the message flow from the buyer to
the reseller. On receiving the postcard, the reseller sends the products and
the invoice. The buyer receives the products and, assuming everything is fine,

10 1 Introduction

settles the received invoice, for instance, by money transfer. Once the money
arrives at the reseller, the interacting business processes complete.

Large parts of the interacting business processes shown in Figure 1.3 can
also be implemented by software systems. The buyer might use a Web browser
to search the online catalogue of the reseller; she fills her shopping basket,
provides address and billing information, and presses the submit button.

Pressing the submit button submits the order, that is, it realizes the mes-
sage flow from the buyer to the reseller. The message flow from buyer to
reseller is no longer implemented by surface mail, but by Internet protocols.
The buyer’s Web browser sends a message to the reseller’s Web server, which
calls a software module that places the order in the reseller’s ordering system.

In case intangible goods have been ordered, such as music or software,
sending the products can also be realized by software systems. The same
applies for invoicing and billing, where online billing services can be integrated
into the business process.

Fig. 1.4. Variant of reseller process with interacting business process

Graphical representations of business processes, as shown in the examples,
focus on the process structure and the interactions of the participating parties
rather than on technical aspects of their realization. This is an important
aspect in business process modelling, since the definition of business processes
and their interaction behaviour does not prescribe certain implementation
strategies or platforms.

1.2 Business Process Lifecycle 11

The realization of business processes by participants can change without
affecting the externally visible behaviour of the process, that is, without af-
fecting the business process interaction. To illustrate this property, the buyer
interacts with a different reseller, called Reseller-A in Figure 1.4. The business
process of this reseller performs the activities in a sequential order; there are
no concurrent activities as in the business process of the original reseller.

Reseller-A realizes the following business rule: a product is sent only after
the payment has been received. This is a sensible approach that protects the
reseller from fraudulent buyers. The business process of Reseller-A also works
well with the buyer process, since the concurrent branches allow the products
to be received after the invoice is settled. However, overall execution might
take longer than in the first case, since fewer activities can be performed
concurrently.

The examples discussed so far have shown how to represent individual
business processes that realize process orchestrations. We have also looked
at interacting business processes that realize process choreographies. These
examples focus on the activities of business processes and their relationships
and on the business partners involved. The next section will consider the
development of business processes and software platforms that realize them
by introducing the business process lifecycle.

1.2 Business Process Lifecycle

The goal of this section is providing an overall understanding of the concepts
and technologies that are relevant in business process management, using a
business process lifecycle. This lifecycle is also useful for scoping the contents
of this book.

The business process lifecycle is shown in Figure 1.5; it consists of phases
that are related to each other. The phases are organized in a cyclical structure,
showing their logical dependencies. These dependencies do not imply a strict
temporal ordering in which the phases need to be executed. Many design
and development activities are conducted during each of these phases, and
incremental and evolutionary approaches involving concurrent activities in
multiple phases are not uncommon.

Chapter 8 extends this lifecycle by proposing a methodology for the de-
velopment of business process applications.

Design and Analysis

The business process lifecycle is entered in the Design and Analysis phase, in
which surveys on the business processes and their organizational and technical
environment are conducted. Based on these surveys, business processes are
identified, reviewed, validated, and represented by business process models.

12 1 Introduction

Fig. 1.5. Business process lifecycle

Explicit business process models expressed in a graphical notation facili-
tate communication about these processes, so that different stakeholders can
communicate efficiently, and refine and improve them. Chapter 4 investigates
languages to express business process models.

Business process modelling techniques as well as validation, simulation,
and verification techniques are used during this phase. Business process mod-
elling is the core technical subphase during process design. Based on the survey
and the findings of the business process improvement activities, the informal
business process description is formalized using a particular business process
modelling notation.

Once an initial design of a business process is developed, it needs to be
validated. A useful instrument to validate a business process is a workshop,
during which the persons involved discuss the process. The participants of the
workshop will check whether all valid business process instances are reflected
by the business process model.

Simulation techniques can be used to support validation, because certain
undesired execution sequences might be simulated that show deficits in the
process model. Simulation of business processes also allows stakeholders to
walk through the process in a step-by-step manner and to check whether
the process actually exposes the desired behaviour. Most business process

1.2 Business Process Lifecycle 13

management systems provide a simulation environment that can be used in
this phase.

Business processes involving multiple participants play an increasing role
to foster the collaboration between enterprises. The design and analysis of
interacting business processes is subject of Chapter 5.

Business process modelling has an evolutionary character in the sense that
the process model is analyzed and improved so that it actually represents the
desired business process and that it does not contain any undesired properties.
Deadlock is such a property, in which all activities in a business process come
to a halt. Chapter 6 investigates the verification of business process models
with respect to correctness properties.

Configuration

Once the business process model is designed and verified, the business process
needs to be implemented. There are different ways to do so. It can be imple-
mented by a set of policies and procedures that the employees of the enterprise
need to comply with. In this case, a business process can be realized without
any support by a dedicated business process management system.

In case a dedicated software system is used to realize the business process,
an implementation platform is chosen during the configuration phase. The
business process model is enhanced with technical information that facilitates
the enactment of the process by the business process management system.

The system needs to be configured according to the organizational en-
vironment of the enterprise and the business processes whose enactment it
should control. This configuration includes the interactions of the employees
with the system as well as the integration of the existing software systems
with the business process management system.

The latter is important, since in today’s business organizations, most busi-
ness processes are supported by existing software systems. Depending on the
information technology infrastructure, the process configuration phase might
also include implementation work, for instance, attaching legacy software sys-
tems to the business process management system.

The configuration of a business process management system might also
involve transactional aspects. Transactions are a well-known concept from
database technology, where a transaction manager guarantees that applica-
tion programs run as transactions and obey the ACID principle: atomicity,
consistency, isolation, and durability. This means that transactions are exe-
cuted in an atomic all-or-nothing fashion, they transfer a consistent database
state into another consistent database state, they do not interfere with other
transactions, and transaction results are durable and survive future system
failures.

While in business process management database applications with trans-
actional properties play an important role to realize process activities, trans-
actional properties can also be defined at the business process level; a subset

14 1 Introduction

of the process activities form one business transaction, so that either all ac-
tivities in this set are performed successfully or none is executed, realizing the
atomicity property.

Unfortunately, the techniques that guarantee transactional behaviour in
database systems cannot be used for business process transactions, since they
are based on preventing access to data objects by locking, and locking data
objects during process instances is no valid option. Business transactions are
currently at the research stage; therefore, this book does not investigate them
further.

Once the system is configured, the implementation of the business process
needs to be tested. Traditional testing techniques from the software engi-
neering area are used at the level of process activities to check, for instance,
whether a software system exposes the expected behaviour.

At the process level, integration and performance tests are important for
detecting potential run time problems during the configuration phase. Once
the test subphase is complete, the system is deployed in its target environment.
Depending on the particular setting, additional activities might be required,
for instance, training of personnel and migration of application data to the
new realization platform.

The configuration of business process management systems and the re-
spective software architectures are investigated in Chapter 7.

Enactment

Once the system configuration phase is completed, business process instances
can be enacted. The process enactment phase encompasses the actual run time
of the business process. Business process instances are initiated to fulfill the
business goals of a company. Initiation of a process instance typically follows
a defined event, for instance, the receipt of an order sent by a customer.

The business process management system actively controls the execution
of business process instances as defined in the business process model. Process
enactment needs to cater to a correct process orchestration, guaranteeing that
the process activities are performed according to the execution constraints
specified in the process model.

A monitoring component of a business process management system visual-
izes the status of business process instances. Process monitoring is an impor-
tant mechanism for providing accurate information on the status of business
process instances. This information is valuable, for instance, to respond to a
customer request that inquires about the current status of his case.

Detailed information on the current state of process instances are available
in a business process management system. In Section 3.4, the states and state
transitions of activity instances are investigated, while Section 3.5 covers pro-
cess instances. State information can be used to visualize and monitor process
instances. Visualization techniques can be based on colours, so that, for in-
stance, an enabled activity is shown in green, a running instance is marked in

1.2 Business Process Lifecycle 15

blue, and a completed process instance is represented in grey. Most business
process management systems provide monitoring information that is based on
states of active business processes.

During business process enactment, valuable execution data is gathered,
typically in some form of log file. These log files consist of ordered sets of log
entries, indicating events that have occurred during business processes. Start
of activity and end of activity is typical information stored in execution logs.
Log information is the basis for evaluation of processes in the next phase of
the business process lifecycle.

Evaluation

The evaluation phase uses information available to evaluate and improve busi-
ness process models and their implementations. Execution logs are evaluated
using business activity monitoring and process mining techniques. These tech-
niques aim at identifying the quality of business process models and the ade-
quacy of the execution environment.

For instance, business activity monitoring might identify that a certain
activity takes too long due to shortage of resources required to conduct it.
Since this information is useful also for business process simulation, these
phases are strongly related.

Similar considerations apply to process mining, which has recently devel-
oped into an active field of research. There are different applications of process
mining. If the execution logs are generated by traditional information systems,
they collectively can be used as a starting point to develop business process
models. The evaluation of existing business process models is another appli-
cation area of process mining. The evaluation phase is not covered in detail in
this book; for further information, the reader is referred to the bibliographical
notes in the end of this part.

Administration and Stakeholders

There are numerous artefacts at different levels of abstraction in business
process management scenarios that need to be organized and managed well.
Structured storage and efficient retrieval of artefacts regarding business pro-
cess models and information on business process instances as well as the orga-
nizational and technical execution environment need to be taken into account.

Especially in large organizations with hundreds or thousands of business
process models, a well-structured repository with powerful query mechanisms
is essential. In addition to business processes, knowledge workers with their
organizational roles and skills, as well as the information technology landscape
of the enterprise, need to be represented properly.

The business process domain is characterized by several types of stakehold-
ers with different knowledge, expertise, and experience; these are classified into
the following roles:

16 1 Introduction

• Chief Process Officer : The chief process officer is responsible for standard-
izing and harmonizing business processes in the enterprise. In addition, he
or she is responsible for the evolution of business processes in the presence
of changing market requirements. Installing an explicit role of chief pro-
cess officer acknowledges the importance of business process management
at the top level management.

• Business Engineer : Business engineers are business domain experts re-
sponsible for defining strategic goals of the company and organizational
business processes. Often, business engineers have a nontechnical educa-
tional background, so that convenient and simple-to-use process modelling
notations are required to communicate about business processes with these
stakeholders.

• Process Designer : Process designers are responsible for modelling busi-
ness processes by communicating with business domain experts and other
stakeholders. Very good analytical capabilities and excellent communica-
tion skills are important for a process designer.

• Process Participant : Process participants conduct the actual operational
work during the enactment of business process instances. They also play
an important role during business process modelling, because they are
knowledgeable about the activities conducted and their interrelationships
with activities conducted by other process participants. It is the task of
the process designer to assemble from this information a consistent overall
view and capture it as a business process model.

• Knowledge Worker : Knowledge workers are process participants who use
software systems to perform activities in a business process. Knowledge
workers are equipped with detailed knowledge of the application domain,
and they can perform activities, or even parts of business processes, au-
tonomously.

• Process Owner : Each business process model is assigned an individual
who is responsible for the correct and efficient execution of the process.
He or she is responsible for detecting inefficiencies in the process and for
improving it, in close collaboration with the process participants and the
process designers.

• System Architect : System architects are responsible for developing and
configuring business process management systems so that the configured
business process management system enacts the business processes in the
context of the information systems infrastructure at hand.

• Developers: Developers are information technology professionals who cre-
ate software artefacts required to implement business processes. The im-
plementation of interfaces to existing software systems is an important
area of work for developers.

These different types of stakeholders need to cooperate closely in designing
business processes and in developing adequate solutions for enacting them.
The business process lifecycle provides a rough organization of the work con-

1.3 Classification of Business Processes 17

ducted and the concepts used in this endeavour. In Chapter 8 the specific
properties of development methodologies for business process management
applications are discussed in more detail.

1.3 Classification of Business Processes

In this section, the main dimensions along which business processes can be
classified are investigated.

Organizational versus Operational

Different levels of abstraction can be identified in business process manage-
ment, ranging from high-level business goals and business strategies to im-
plemented business processes. These levels are depicted in Figure 1.6. At the
highest level, business goals and strategies are specified. Business goals refer
to the long-term objectives of the company, while business strategies refer to
its plans for achieving these goals.

At the second level, organizational business processes can be found. Orga-
nizational business processes are high-level processes that are typically speci-
fied in textual form by their inputs, their outputs, their expected results, and
their dependencies on other organizational business processes. These business
processes act as supplier or consumer processes. An organizational business
process to manage incoming raw materials provided by a set of suppliers is
an example of an organizational business process.

Informal and semiformal techniques are used at these high levels. The
strategy of a company, its goals, and its organizational business processes
can be described in plain text, enriched with diagrams expressed in an adhoc
or semiformal notation. A forms-based approach to express organizational
business processes is discussed in the next chapter.

While organizational business processes characterize coarse-grained busi-
ness functionality, typically there are multiple operational business processes
required that contribute to one organizational business process. In operational
business processes, the activities and their relationships are specified, but
implementation aspects of the business process are disregarded. Operational
business processes are specified by business process models.

Operational business processes are the basis for developing implemented
business processes. Implemented business processes contain information on
the execution of the process activities and the technical and organizational
environment in which they will be executed.

As discussed earlier in this chapter, there are multiple ways to implement
business processes, ranging from written procedures and policies of the orga-
nization to the use of process enactment platforms. In any case, implemented
business process refers to a specification that allows the enactment of the
process on a given platform, be it organizational or technical.

18 1 Introduction

Fig. 1.6. Levels of business processes: from business goals and strategies to imple-
mented business processes

Intraorganizational Processes versus Process Choreographies

As defined above, each business process is performed by a single organiza-
tion. If there is no interaction with business processes performed by other
parties, then the business process is called intraorganizational . Most business
processes, however, interact with business processes in other organizations,
forming process choreographies. The ordering process choreography discussed
earlier in this chapter is an example of interacting business processes.

The primary focus of intraorganizational business processes is the stream-
lining of the internal processes by eliminating activities that do not provide
value. The personnel of the enterprise is represented in organizational models
used to allocate activities to persons who are skilled and competent to per-
form these activities. Traditional process management systems can be used to
support intraorganizational business processes.

There are a number of issues to address when dealing with interacting
business processes, including not only communication aspects related to the
process structures, but also legal matters. Interactions between business pro-
cesses need to be protected by legally binding contracts between the companies
involved.

Also, the technical layer requires more thought, since multiple organiza-
tions have most likely a heterogeneous software infrastructure that hampers

1.3 Classification of Business Processes 19

interoperability in the software layer. Process choreographies are discussed in
detail in Chapter 5.

Degree of Automation

Business processes can diverge in the level of automation. There are business
processes that are fully automated, meaning that no human is involved in the
enactment of such a business process. An example is ordering an airline ticket
using Web interfaces. While the process is fully automated on the side of
the airline, the customer is involved with manual activities, such as providing
address information via Web browser interfaces.

Enterprise application integration is another area where automated busi-
ness processes can be found. The goal is to integrate the functionality provided
by a heterogeneous software landscape. While there are different techniques to
integrate enterprise applications, process technology is an important technol-
ogy, especially since the emergence of service-oriented software architectures
that allow composing services to processes.

Many business processes require manual activities; but they also include
automated activities. Processing an insurance claim is an example of such a
process. Manual activities enter the customer data and determine the settle-
ment of the damage, while automated activities are used to store data on the
damage in the software systems of the company.

The interaction with the human user is essential in these settings. Early
approaches that prescribe to human users “what to do next” often failed.
User interfaces that accept the knowledge worker as an important source to
improve and control the process provide more user acceptance.

Degree of Repetition

Business processes can be classified according to their degree of repetition.
Examples of highly repetitive business processes include business processes
without human involvement, such as online airline ticketing. However, business
processes in which humans are involved can occur frequently, for example,
insurance claim processing. If the degree of repetition is high, then investments
in modelling and supporting the automatic enactment of these processes pay
off, because many process instances can benefit from these investments.

At the other end of the repetition continuum, there are business processes
that occur a few times only. Examples include large engineering efforts, such
as designing a vessel. For these processes it is questionable whether the effort
introduced by process modelling does in fact pay off, because the cost of
process modelling per process instance is very high.

Since improving the collaboration between the persons involved is at the
centre of attention, these processes are called collaborative business processes.

20 1 Introduction

In collaborative business processes, the goal of process modelling and enact-
ment is not only efficiency, but also tracing exactly what has actually been
done and which causal relationships between project tasks have occurred.

This aspect is also present in the management of scientific experiments,
where data lineage is an important goal of process support. Since each ex-
periment consists of a set of activities, an increasing fraction of the experi-
mentation is performed by analyzing data using software systems. The data
is transformed in a series of steps. Since experiments need to be repeatable,
it is essential that the relationship of the data sets be documented properly.

Business processes with a low degree of repetition are often not fully au-
tomated and have a collaborative character, so that the effort in providing
automated solutions is not required, which lowers the cost.

Degree of Structuring

If the business process model prescribes the activities and their execution
constraints in a complete fashion, then the process is structured. The different
options for decisions that will be made during the enactment of the process
have been defined at design time. For instance, a credit request process might
use a threshold amount to decide whether a simple or a complex credit check
is required, for instance, 5000 Euros. Each process instance then uses the
requested amount to decide on the branch to take.

Leymann and Roller have organized business processes according to di-
mensions structure and repetition. They coined the term production workflow.
Production workflows are well structured and highly repetitive. Traditional
process management system functionality is well suited to supporting produc-
tion workflows.

If process participants who have the experience and competence to decide
on their working procedures perform business process activities, structured
processes are more of an obstacle than an asset. Skipping certain process ac-
tivities the knowledge worker does not require or executing steps concurrently
that are ordered sequentially in the process model is not possible in structured
business processes.

To better support knowledge workers, business process models can define
processes in a less rigid manner, so that activities can be executed in any order
or even multiple times until the knowledge worker decides that the goals of
these activities have been reached. So called adhoc activities are an important
concept for supporting unstructured parts of processes.

Case handling is an approach that supports knowledge workers performing
business processes with a low level of structuring and, consequently, a high
level of flexibility. Rather than prescribing control flow constraints between
process activities, fine-grained data dependencies are used to control the en-
actment of the business process. These aspects will be discussed in more detail
in Chapter 7.

1.4 Goals, Structure, and Organization 21

1.4 Goals, Structure, and Organization

Before the structure of this book is discussed, a summary of the goals of
business process management is given.

Arguably, the most important goal of business process management is a
better understanding of the operations a company performs and their rela-
tionships. The explicit representation of business processes is the core concept
to achieving this better understanding.

Identifying the activities and their relationships and representing them
by business process models allows stakeholders to communicate about these
processes in an efficient and effective manner. Using business process models
as common communication artefacts, business processes can be analyzed, and
potentials for improving them can be developed.

Flexibility—the ability to change—is the key operational goal of business
process management. The subjects of change are diverse. Business process
management not only supports changing the organizational environment of
the business process, but also facilitates changes in the software layer without
changing the overall business process. Flexibility in business process manage-
ment is discussed in detail in Section 3.10.

A repository of the business processes that a company performs is an
important asset. To some extent, it captures knowledge of how the company
performs its business. Therefore, business process models can be regarded as
a means to expressing knowledge of the operation of a company.

But business process management also facilitates continuous process im-
provement. The idea is to evolutionarily improve the organization of work
a company performs. Explicit representations of business processes are well
suited for identifying potentials for improvement, but they can also be used
to compare actual cases with the specified process models. While in principle
more radical business process reengineering activities can also be supported
by business processes, evolutionary measures to improve business processes
might in many cases be the favourable solution.

Business process management also aims at narrowing the gap between
business processes that a company performs and the realization of these pro-
cesses in software. The vision is that there is a precisely specified relationship
between an activity in the business process layer and its realization in soft-
ware.

The book is organized into three parts, providing a foundation of business
process management, looking at concepts and languages for business process
modelling, and investigating architectures and methodologies.

Part I continues with Chapter 2, which looks at business process man-
agement from a software systems point of view by investigating the evolution
of enterprise systems architectures. The role of business process management
systems and the relationships to other types of information systems are high-
lighted.

22 1 Introduction

Part II covers business process modelling. Chapter 3 presents the foun-
dation of business process modelling by introducing abstraction concepts. It
also introduces a way to describe process models and process instances based
on fundamental concepts, such as events that occur during the execution of
business process instances and their dependencies.

Chapter 4 looks at process orchestrations by first discussing control flow
patterns. The meaning of these patterns is expressed by properties of process
instances using these patterns. A metamodel is used to specify the semantics
of control flow patterns. An important part of this book deals with process
modelling techniques and notations. The most important ones are discussed in
a concise manner, including Petri nets, event-driven process chains, workflow
nets, Yet Another Workflow Language, a graph-based workflow language, and
the modelling elements of the Business Process Model and Notation, which
are related to process orchestrations.

Process choreographies are covered in Chapter 5. Process choreographies
describe the interaction of multiple business processes and, as such, are an im-
portant concept for supporting business-to-business collaboration. After intro-
ducing high-level choreographies that specify dependencies between interac-
tions of choreographies, service interaction patterns are discussed. Interesting
issues occur with regard to the correctness of combined execution when com-
bining multiple business processes. These issues are addressed by discussing
the notions of compatibility and consistency. The public-to-private approach
is introduced, a concrete technique to develop process orchestrations that are
consistent with their behavioural interfaces. This chapter is complemented by
introducing language elements of the Business Process Model and Notation
that are related to process choreographies.

Properties of business process models are investigated in Chapter 6. Cor-
rect data dependencies within a process are a simple type of correctness prop-
erty of a business process. With object lifecycle conformance, a property of
business processes with respect to the data objects they operate on, is in-
troduced. Other correctness criteria have been proposed as different types
of soundness criteria. If a business process is sound, then each process in-
stance enjoys certain execution guarantees, for instance, freedom from dead-
lock. There are different types of soundness properties, each of which takes
into account some specific aspect of the business process executed.

Part III investigates architectures of business process management sys-
tems and methodologies to develop business process applications. Chapter 7
introduces traditional workflow management architectures and flexible work-
flow management architectures that allow us to modify processes dynami-
cally. Based on a discussion of Web services as the current implementation
of service-oriented architectures, Web services composition is discussed as the
mechanism to realize business processes whose activities are implemented by
Web services. To ease the composition of services, advanced service composi-
tion, which takes advantage of semantic annotations of services, is discussed.

1.4 Goals, Structure, and Organization 23

Chapter 7 completes by introducing data-driven process control and its real-
ization in case handling systems.

Chapter 8 introduces a methodology for the development of business pro-
cess applications involving human users. This methodology provides an under-
standing of the complexity and of the technical and organizational difficulties
in the design and development of business process applications.

Part II

Business Process Modelling

2

Evolution of Enterprise Systems Architectures

Process orientation in general and business process management in particu-
lar are parts of a larger development that has been affecting the design of
information systems since its beginning: the evolution of enterprise systems
architectures.

Enterprise systems architectures are mainly composed of information sys-
tems. These systems can be distinguished from software systems in the area
of embedded computing that control physical devices such as mobile phones,
cars, or airplanes. Business process management mainly deals with informa-
tion systems in the context of enterprise systems architectures.

The guiding principle of this evolution is separation of concerns, a principle
identified by Edsger Dijkstra and characterized by “focusing one’s attention
upon some aspect.” It is one of the key principles in handling the complexity
of computer systems.

While this principle has many applications in theoretical and applied com-
puter science, in the context of software systems design—and therefore also in
information systems design—it means identifying sets of related functionality
and packaging them in a subsystem with clearly identified responsibilities and
interfaces. Using this approach, complex and powerful software systems can
be engineered. Separation of concerns also facilitates reuse at a level of coarse
granularity, because well-specified functional units provided by subsystems
can be used by different applications.

Separation of concerns also facilitates response to change and is therefore
an important mechanism to support flexibility of software systems, because
individual subsystems can be modified or even exchanged with another sub-
system providing the same functionality without changing other parts of the
system—provided the interfaces remain stable.

Since local changes do not affect the overall system, a second guiding prin-
ciple of computer science is realized: information hiding, originally introduced
by David Parnas. Reasons for changes can be manifold: new requirements in
an ever-changing dynamic market environment, changes in technology, and
changes in legal regulations that need to be reflected in software systems.

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 2,
© Springer-Verlag Berlin Heidelberg 2012

25

http://dx.doi.org/10.1007/978-3-642-28616-2_2

26 2 Evolution of Enterprise Systems Architectures

While effective response to change is an important goal of any software sys-
tem, it is of particular relevance to business process management systems, as
will be detailed below.

Before addressing the evolution of enterprise systems architectures, the
understanding of software architectures as used in this book is described. In
general, software architectures play a central role in handling the complexity
of software systems.

Definition 2.1 A software architecture defines a structure that organizes the
software elements and the resources of a software system. Software elements
and resources are represented by subsystems. In a given software architec-
ture, these subsystems have specific responsibilities and relationships to other
subsystems. �

Software architectures do not detail the internal structure of a subsystem;
but they detail their externally visible behaviour and, thus, their relation-
ships to other subsystems of the architecture. Internal aspects of a subsystem
can, however, be represented in the software architecture of the particular
subsystem.

2.1 Traditional Application Development

The main goal of this section is to categorize business process management
systems from a software systems point of view into major developments that
information systems design underwent in the last decades. Figure 2.1 depicts
the first stages in the evolution of information systems. The dates in that figure
provide only rough estimates—the respective systems architectures were not
uncommon at the dates given.

In the early days of computing, applications were developed from scratch,
without taking advantage of prior achievements other than subroutines of
fine granularity. Application programmers needed to code basic functionality
such as, for instance, access to persistent storage and memory management.
Basic functionality needed to be redeveloped in different applications, so that
application programming was a costly and inefficient endeavour. As a result
of the tight coupling of the programmed assembler code with the hardware,
porting an application to a new computer system results in a more or less
complete redevelopment.

Operating systems were developed as the first type of subsystem with
dedicated responsibilities, realizing separation of operating systems concerns
from the application. Operating systems provide programming interfaces to
functionality provided by the computer hardware. Applications can implement
functionality by using interfaces provided by the operating system, realizing
increased efficiency in system development.

Specific properties of the computer hardware could be hidden from the
application by the operating system, so that changes in the hardware could be

2.1 Traditional Application Development 27

reflected by a modified implementation of the operating system’s interface, for
instance, by developing a new driver for a new hardware device. An operating
systems (OS) layer is depicted in Figure 2.1 as the lowest level subsystem.

Fig. 2.1. Early systems architectures

The next step in the evolution of systems architectures considers the man-
agement of data. Before dedicated subsystems for handing data were devel-
oped, each application program was responsible for storing its data persis-
tently and for retrieving it. Programming interfaces were used to store data.
Since the structure of the stored data matches the data structure in the appli-
cation program, each change in the data structures of the application results
in a change of the data structures in persistent memory, and vice versa. Due
to the strong link between the data structures in the application and the data
structures in persistent memory, any modification requires implementation or
reorganization effort.

Two additional problems are associated with this approach: the design and
implementation of data management takes considerable implementation effort
because dedicated storage and retrieval functionality need to be implemented
in each application. In addition, data consistency issues arise if multiple ap-
plications store related data redundantly. In this case, the modification of a
data item needs to be realized by a modification of each copy of the data item
by different systems, introducing the potential for data inconsistency issues.

To provide a reusable set of functionality and to overcome the data in-
consistency problem, database management systems were introduced. Follow-
ing early data models, like the hierarchical data model and the network data
model, relational databases were developed. Relational database systems allow
modification of the structures of the physically stored data without affecting
the application programs. This important property is known as physical data
independence.

At the same time, logical data independence is covered, that is, the abil-
ity to change the logical organization of the data without the need to change
applications. Efficient and convenient access to large amounts of data, declara-

28 2 Evolution of Enterprise Systems Architectures

tive query languages, most prominently the Structured Query Language SQL,
transaction processing capabilities to cater for concurrent access and recovery
from failure situations, security aspects, and many more features are realized
in today’s database management systems. Today, relational database systems
are an important backbone of modern information systems.

The layering of the subsystem—applications sit on top of database systems
that sit on top of operating systems, as shown in Figure 2.1—is simplified.
Applications do not only use the functionality provided by the database man-
agement system—as the layering might indicate. Applications also directly
use functionality provided by the underlying operating system.

The next step in the evolution of information systems is dedicated to
graphical user interfaces which were developed to ease human interaction with
application systems. Before the advent of graphical user interfaces, users in-
teracted with application programs on the basis of mostly textual interfaces
that required extensive user training before work could be done efficiently.

Since until then applications covered a comparatively narrow ground and
the users of these systems were highly specialized employees, textual or simple
graphical interfaces were adequate for most applications. Due to increased
functionality of applications and the associated broadening of the competence
and skills of the personnel, more elaborate user interfaces were required.

The new role of the employees can be characterized as that of a knowledge
worker. Knowledge workers have a large set of capabilities and skills at their
disposal, from which they can choose the one that best suits the current task.
In order to be effective, knowledge workers require advanced user interfaces
to access the required functionality from powerful information systems.

The separation of the business logic covered in applications and the inter-
action between the system and the knowledge worker led to the development
of graphical user interfaces, which also foster reuse of functionality at the user
interface layer. Today, graphical user interfaces are developed using elaborate
frameworks, increasing the efficiency of graphical user interface development.

2.2 Enterprise Applications and their Integration

Based on operating systems and communication systems as a basic abstrac-
tion layer, relational database management systems for storing and retrieving
large amounts of data, and graphical user interface systems, more and more
elaborate information systems could be engineered.

Most of these information systems host enterprise applications. These ap-
plications support enterprises in managing their core assets, including cus-
tomers, personnel, products, and resources. Therefore, it is instructive to look
in more detail at enterprise information systems, starting from individual
enterprise applications and addressing the integration of multiple enterprise
applications. The integration of multiple enterprise applications has spawned

2.2 Enterprise Applications and their Integration 29

a new breed of middleware, enterprise application integration systems. En-
terprise application integration proves to be an important application area of
business process management.

These developments can be illustrated with an enterprise scenario. In the
early stages of enterprise computing, mainframe solutions were developed that
hosted monolithic applications, typically developed in assembler programming
language. These monolithic applications managed all tasks with a single huge
program, including the textual user interface, the application logic, and the
data. Data was mostly stored in files, and the applications accessed data files
through the operating system.

With the advent of database systems, an internal structuring of the system
was achieved: data was managed by a database management system. However,
the application code and the user interface code were not separated from each
other. The user interface provides the desired functionality through textual,
forms-based interfaces.

With lowering cost of computer hardware and growing requirements for
application functionality, more application systems were developed. It was
typical that an enterprise had one software system for human resources man-
agement, one for purchase order management and one for production plan-
ning. Each of these application systems hosted its local data, typically in a
database system, but sometimes even on the file system. In large enterprises,
in different departments, different application systems were sometimes used
to cope with the same issue.

What made things complicated was the fact that these application sys-
tems hosted related data. This means that one logical data object, such as a
customer address, was stored in different data stores managed by different ap-
plication systems. Dependencies between data stored in multiple systems were
also represented by dedicated links, for instance through a contract identifier
or an employee identifier.

It is obvious that in these settings changes were hard to implement, be-
cause there are multiple data dependencies between these disparate systems,
and changes in one system had to be mirrored by changes in other systems.
Detecting the systems affected and the particular change required in these
systems was complex and error-prone. As a result, any change of the data
objects, for instance, of a customer address, needed to be reflected in multiple
applications. This lack of integration led to inconsistent data and—in many
cases—to dissatisfied customers. An application landscape showing these de-
pendencies between multiple applications is shown in Figure 2.2.

2.2.1 Enterprise Resource Planning Systems

In this setting, Enterprise Resource Planning systems (ERP systems) were
developed. The great achievement of enterprise resource planning systems is
that they provide an integrated database that spans large parts of an orga-
nization. Enterprise resource planning systems basically reimplemented these

30 2 Evolution of Enterprise Systems Architectures

Fig. 2.2. Enterprise applications with redundant data and data dependencies

disparate enterprise application systems on the basis of an integrated and
consistent database.

An enterprise resource planning system stores its data in one centralized
database, and a set of application modules provides the desired functionality,
including human resources, financials, and manufacturing. Enterprise resource
planning systems have effectively replaced numerous heterogeneous enterprise
applications, thereby solving the problem of integrating them.

Fig. 2.3. Two-tier client-server architecture

Enterprise resource planning systems are accessed by client applications,
as shown in Figure 2.3. These client applications access an application server

2.2 Enterprise Applications and their Integration 31

that issues requests to a database server. We do not address the architectures
of enterprise systems in detail but stress the integrated data storage and the
remote access through client software.

With the growth of enterprises and new market requirements, driven by
new customer needs around the year 2000, the demand for additional function-
ality arose, and new types of software systems entered the market. The most
prominent types of software systems are supply chain management systems,
or SCM systems, and customer relationship management systems, or CRM
systems. While basic functionality regarding supply chain management has
already been realized in enterprise resource planning systems, new challenges
due to increased market dynamics have led to dedicated supply chain man-
agement systems. The main goal of these systems is to support the planning,
operation, and control of supply chains, including inventory management,
warehouse management, management of suppliers and distributors, and de-
mand planning.

Regarding the evolution of enterprise systems architectures, the main point
is that new types of information systems have entered the market, often de-
veloped by different vendors than that of the enterprise resource planning
system many companies run. At the technical level, the supply chain manage-
ment system hosts its own database, with data related to supply chains. Since
large amounts of data are relevant for both enterprise resource planning and
supply chain management, data is stored redundantly. As a result, system ar-
chitects face the same problems as they did years ago with the heterogeneous
enterprise applications.

As with the settings mentioned, in order to avoid data inconsistencies and,
at the end of the day, dissatisfied customers, any modification of data needs
to be transmitted to all systems that host redundant copies of the data. If, for
example, information on a logistics partner changes that is relevant for both
the enterprise resource planning system and the supply chain management
system, then this change needs to be reflected in both systems. From a data
integrity point of view, this change even needs to take place within a single
distributed transaction, so that multiple concurrent changes do not interfere
with each other.

The source of the problem is, again, redundant information spread across
multiple application systems. Since this information is not integrated, the
user of an enterprise resource planning system can access only the information
stored in this system. However, the customer relationship management system
also holds valuable data of this customer.

When the customer calls and the call centre personnel can only access the
information stored in one system, and is therefore not aware of the complete
status of the customer, the customer is likely to become upset; at least, he does
not feel well served. The customer expects better service, where the personnel
is aware of complete status and not just of partial status that happens to be
stored in the software system that the call centre agent can access. In the
scenario discussed, the call centre agent needs to know the complete status of

32 2 Evolution of Enterprise Systems Architectures

the customer, no matter in which software system the information might be
buried.

To characterize this unsatisfactory situation, the term siloed applications
has been coined, meaning that data is stored redundantly in different systems,
and these systems are not related at all. Figure 2.4 shows siloed enterprise
applications customer relationship management, supply chain management,
and enterprise resource planning systems. While these application systems
can be physically connected by, for instance, a local network, they are not
logically integrated.

As a result, the only way to integrate the information stored in these sys-
tems is through the user, who accesses the information in the various systems
and does the integration manually. Obviously, this manual integration con-
sumes considerable resources and is error-prone, so that other solutions are
sought.

Fig. 2.4. Siloed enterprise applications

With enterprise resource planning systems, this problem had already been
solved by redeveloping an integrated solution. Unfortunately, due to the large
complexity of the systems at hand, the same approach to reimplementing
systems functionality in an integrated way is not feasible in the new context.
The only option is to integrate these systems, which leads to a new breed of
middleware system, the enterprise application integration system.

2.2.2 Enterprise Application Integration

Enterprises are facing the challenge of integrating complex software systems
in a heterogeneous information technology landscape that has grown in an
evolutionary way for years, if not for decades. Most of the application systems
have been developed independently of each other, and each application stores
its data locally, either in a database system or some other data store, leading
to siloed applications.

Data heterogeneity issues occur if a logical data item—for instance, a
customer address—is stored multiple times in different siloed applications.

2.2 Enterprise Applications and their Integration 33

Assume that customer data is stored in an enterprise resource planning system
and a customer relationship management system. Although both systems use
a relational database as storage facility, the data structures will be different
and not immediately comparable.

These differences involve both the types of particular data fields (strings
of different length for attribute CustomerName), but also the names of the
attributes. In the customer example, in one system the attribute CAddr will
denote the address of the customer, while in the other system the attribute
StreetAdrC denotes the address.

The next level of heterogeneity regards the semantics of the attributes.
Assume there is an attribute Price in the product tables of two application
systems. The naming of the attribute does not indicate whether the price
includes or excludes value-added tax. These semantic differences need to be
sorted out if the systems are integrated. Data integration technologies are
used to cope with these syntactic and semantic difficulties.

Data integration is an important aspect in enterprise application inte-
gration. In this section, the traditional point-to-point enterprise application
integration approach and an approach based on message brokers following the
hub-and-spoke paradigm will be discussed.

Point-to-Point Integration

A typical enterprise scenario is represented in Figure 2.4, where siloed ap-
plications are shown; typically, many more application systems need to be
integrated, often even several instances of a specific type of application sys-
tem, such as enterprise resource planning systems, which in many cases run
different versions of the software.

Enterprise application integration technology is based on middleware tech-
nology that has been around for years. The goal is to take advantage of these
technologies so that data in heterogeneous information technology landscapes
can be integrated properly. In addition to data integration, the processes that
the application systems realize also need to be integrated. This means that
one system performs certain steps and then transfers control to another sys-
tem which takes the results and continues operation. In the context of this
book, the process integration part of enterprise application integration is at
the centre of attention.

Enterprise application integration faces the problem that each integration
project requires design and implementation efforts that might be considerable.
When directly linking each pair of applications, system integrators run into
the N × N problem, meaning that the number of interfaces to develop rises
to the square of the number N of applications to be integrated.

A sketch of this integration issue is represented in Figure 2.5, where N = 6
of siloed applications and their integration links are shown. Each link repre-
sents an interface that connects the application systems associated with it.
Therefore, the number of interfaces between pairs of application systems to

34 2 Evolution of Enterprise Systems Architectures

realize grows to the order of N ×N , incurring considerable overhead. If there
were links between any pairs of application systems, then the number of in-
terfaces to develop would be 5 + 4 + 3 + 2 + 1 = 15. In the general case, the
number of links between N application systems is

N−1∑

i=1

i =
1

2
N(N − 1)

and therefore rises to the square of the number of application systems. In the
scenario shown, not all pairs of application systems are connected, but the
problem of the large number of interfaces can nevertheless be seen.

Fig. 2.5. Early enterprise application integration: hard-wiring of application sys-
tems results in N ×N problem

In enterprise computing, changes are abundant, and a systems architecture
should support changes in an efficient and effective manner. The enterprise
application integration architecture resulting from point-to-point integration
does not respond well to changes. The reason is due to the hard-wiring of the
interfaces. Any change in the application landscape requires adaptation of the
respective interfaces. This adaptation is typically realized by reprogramming
interfaces, which requires considerable resources.

A specific realization platform of enterprise application integration is
message-oriented middleware, where applications communicate by sending
and receiving messages. While conceptually the middleware realizes a central-
ized component, the direct connection between the applications—and there-
fore the point-to-point integration—is still in place, because each sender needs
to encode the receiver of a message.

The main aspect of message-oriented middleware is execution guarantees,
such as guaranteed message delivery. However, the problem mentioned above
is not solved, since any change in the application landscape needs to be im-
plemented by changing the communication structure of applications.

2.2 Enterprise Applications and their Integration 35

A sample architecture of message-oriented middleware is shown in Fig-
ure 2.6. The sender of a message specifies the recipients of the message. As
a result, the supply chain management system defines in its interface that
a certain message needs to be received by a particular enterprise resource
planning system and a particular customer relationship management system,
hard-wiring these application systems via the implemented interfaces.

Message queues are used to store messages persistently and to realize guar-
anteed delivery. A client uses an application that integrates a number of appli-
cation systems; this application is called Integration Application in Figure 2.6.
In order to realize this integration, the integration application sends a message
to another application system, for instance, to an enterprise resource planning
system.

In order to do so, it inserts the message into the message queue of the
enterprise resource planning system. The message is then relayed to the ERP
system, which invokes the requested functionality and returns a result message
to the integration application. This result message is inserted into the incom-
ing message queue of the integration application. Receiving this message, the
integration application prepares a message and sends it to the supply chain
management system. Because each sender of a message needs to encode the
receiver of the message, effectively a point-to-point connection between the
applications is realized. Therefore, the problems of point-to-point connections
in supporting change do not diminish in message-oriented middleware.

This example shows that the cooperation of the application systems is
realized in the integration application. As in the early days of information
systems evolution, the process that describes how this cooperation takes place
is implemented by an application—in this case an integration application.
As a result, the process is hardwired within an application, so that there is
no explicit process model that can be easily communicated and changed, if
required.

While message-oriented middleware provides important run time guaran-
tees, response to change is not considerably improved. Still, any change in the
application structure or in the process behaviour needs to be mirrored by a
change in the communication structure, implemented for each application.

Hub-and-Spoke Integration

The hub-and-spoke paradigm is based on a centralized hub and a number of
spokes that are directly attached to the hub; the spokes are not connected.
The centralized enterprise application integration middleware represents the
hub, and the applications to be integrated are reflected by the spokes. The
applications interact with each other via the centralized enterprise application
integration hub.

It is an important feature of hub-and-spoke architectures that the sender of
a message need not encode the receiver of the message. Instead, each message
is sent to the enterprise application integration hub. The hub is configured in

36 2 Evolution of Enterprise Systems Architectures

Fig. 2.6. Message-oriented middleware for reliable communication between appli-
cations. Senders of messages encode receivers, and process logic is encoded in appli-
cations

such a way that the message structure and content can be used to automati-
cally detect the receiver or receivers of a message.

The advantage of these centralized middleware architectures is that the
number of connections can be reduced. No longer are connections in the order
of N ×N required to connect N application systems. Since each application
system is attached to the centralized hub, N interfaces will suffice. Using these
interfaces, the specific relationships between the applications can be reflected
in the configuration of the middleware.

Fig. 2.7. Hub-and-spoke enterprise application integration architecture

2.2 Enterprise Applications and their Integration 37

A centralized enterprise application integration middleware following the
hub-and-spoke paradigm is shown in Figure 2.7. The centralized hub pro-
vides adapters that hide the heterogeneity of the application systems from
each other. Each application system requires the development of a dedicated
adapter to attach to the hub.

Depending on the complexity of these systems—and the availability of
generic adapters provided by the enterprise application integration vendor—
the development of the adapter might consume considerable resources. When
the adapters are in place and the hub is configured, the applications can
interact with each other in an integrated manner.

On a technical level, message brokers can be used to realize a hub-and-
spoke enterprise application integration system. Message brokers are software
systems that allow a user to define rules for communication between applica-
tions. Therefore, the burden of implementing—and changing—communication
structures is taken away from applications. By defining in a declarative way
how communication between applications takes place, implementation is re-
deemed by declaration, that is, by the declaration of the communication struc-
tures. Response to change is improved, because the sender is not required to
implement these changes locally. These changes can be specified in a declara-
tive way in the central hub, rather than by coding in the applications.

The hub uses rules to manage the dependencies between the applications.
Based on these rules, the hub can use information on the identity of the sender,
the message type, and the message content to decide on which message queues
to relay a message received. Besides relaying messages to recipients, message
brokers also transform messages to realize data mapping between the ap-
plications, so that data heterogeneity issues can be handled appropriately.
Adapters of application systems are used to perform these message transfor-
mations.

As shown in Figure 2.8, each application is linked to the message broker,
reflected by the directed arcs from the applications to the message broker, in
particular, to the rule evaluation component of the message broker. On receipt
of a message, the message broker evaluates the rules and inserts the message
into the queues of the recipients.

The queues are used for guaranteed delivery of messages. Note that any
change in the communication is handled through the message broker: by estab-
lishing new rules or by adapting existing rules, these changes can be realized.
There is no implementation effort required for realizing these changes; just a
modification of the declarative rules.

Publish/subscribe is a mechanism to link applications to message brokers.
The idea is that applications can subscribe to certain messages or types of
messages. Applications can also publish messages. The information received
by publish and subscribe are used by the enterprise application integration
hub to realize the relaying of messages. Figure 2.8 also shows that at a tech-
nical level enterprise application integration with a message broker relies on

38 2 Evolution of Enterprise Systems Architectures

Fig. 2.8. Message broker with declarative rules that de-couples senders from re-
ceivers and eases response to change

adapters that are used for transforming data and protocols between senders
and receivers.

Based on a message broker in which adapters for the applications to be
integrated are in place, applications can be integrated by developing an inte-
gration application. This integration application communicates with the mes-
sage broker and, via the message broker and the adapters of the respective
systems, with the backend application systems.

Various types of interaction between the applications are possible, rang-
ing from simple invocations to complex interactions between multiple appli-
cations. These complex interactions consist of a series of activities, each of
which is represented by an invocation of an application system. These activ-
ities can be ordered, so that execution constraints are in place between the
respective invocations. These execution constraints might be determined by
data dependencies, so that a particular function of the enterprise resource
planning system can only be started when particular customer information is
extracted from the customer relationship management system.

While message brokers are a feasible solution to the enterprise application
integration problem, there are also some drawbacks with them. First of all,
the message broker contains considerable application logic. This application
logic is hidden in the rules that the message broker uses to relay messages. The
configuration and management of these rules becomes hard and cumbersome,

2.3 Enterprise Modelling and Process Orientation 39

since complex dependencies between rules can emerge, so that changing one
rule might have undesired implications on the overall system behaviour.

The main reason for these issues is the missing conceptual underpinning
of enterprise application integration. Despite rule mechanisms, enterprise ap-
plication integration technologies to a large extent rely on programming and
low-level configuration of adapters and message brokers. This applies to both
data integration and process integration.

Data integration is typically performed using data mapping tools. These
tools allow the mapping of data structures of the application to data structures
of the message broker. Conceptually, this approach requires a data model
hosted by the message broker that all applications have agreed upon, that is,
a global data model. In many cases the global data model is not explicitly
developed, but somehow hidden in the data mapping rules realized in the
adapters.

In typical enterprise application integration scenarios, the functionality
provided by the integrated applications is organized by a sequence or partial
order of steps, realizing a process. This process consists of activities that are
executed based on a set of execution constraints, and the execution of these
activities achieves an overall business goal. While in traditional enterprise ap-
plication integration scenarios, like the ones discussed so far, these process
structures are buried in rules that the message broker hosts, an explicit rep-
resentation of processes proves more appropriate.

As the next step in the evolution of information systems, workflow man-
agement, which identifies process specifications as first-class citizens that con-
tribute to solving the process integration problem in enterprise application
integration scenarios is addressed. However, before addressing workflow man-
agement, a second influencing factor for business process management is intro-
duced that emerges from business administration rather than from software
technology, that is, enterprise modelling and process orientation.

2.3 Enterprise Modelling and Process Orientation

In addition to developments in software architecture, business administration
also contributed to the rise of business process management. There were two
major factors that fuelled workflow management and business process man-
agement. Value chains as a means to functionally break down the activities a
company performs and to analyze their contribution to the commercial success
of the company, and process orientation as the way to organize the activities
of enterprises.

2.3.1 Value Chains

Value chains are a well-known approach in business administration to organize
the work that a company conducts to achieve its business goals. Value chains

40 2 Evolution of Enterprise Systems Architectures

were developed by Michael Porter to organize high-level business functions and
to relate them to each other, providing an understanding of how a company
operates.

Porter states that “the configuration of each activity embodies the way
that activity is performed, including the types of human and physical assets
employed and the associated organizational arrangements” and he continues
to look at the enterprise and its ecology by stating that “gaining and sustaining
competitive advantage depends on understanding not only a firm’s value chain
but how the firm fits in the overall value system.”

In order to fulfill their business goals, companies cooperate with each other,
that is, the value chains of these companies are related to each other. The
ecology of the value chains of cooperating enterprises is called value system.
Each value system consists of a number of value chains, each of which is
associated with one enterprise.

The value chain of a company has a rich internal structure, which is repre-
sented by a set of coarse-grained business functions. These high-level business
functions, for instance, order management and human resources, can be bro-
ken down into smaller functional units, spanning a hierarchical structure of
business functions of different granularity.

The process of breaking down a coarse-grained function into finer-grained
functions is called functional decomposition. Functional decomposition is an
important concept to capture and manage complexity. For instance, order
management can be broken down into business functions to obtain and store
an order and to check an order.

Figure 2.9 depicts a typical value system of an enterprise E, shown at the
centre of the value system. This enterprise manufactures goods. In order to
do so, it cooperates with suppliers S1 and S2 that provide raw material. To
bring the products to its customers, enterprise E cooperates with transport
and logistics companies that realize a channel from the manufacturer E to the
buyers.

The graphical arrangements of value chains in the context of a value system
are centred at the enterprise under consideration, enterprise E in the example.
If channel enterprise C1 was addressed, then C1 would have been drawn
in the centre, and it would have E among its incoming value chains and a
set of buyers among its outgoing value chains. Value systems provide a very
high-level characterization of the relationship of a particular enterprise to its
business environment.

The arrangement of the value chains in a value system does not imply any
particular ordering of the functions that the respective companies conduct.
Therefore, value chains do not have a formal meaning as far as the ordering
of the business functions is concerned. The arrangement of the value chains in
Figure 2.9 is quite obvious in a manufacturing environment, where enterprise
E receives raw material from its suppliers (incoming value chains) and delivers
products via its channels to its buyers (outgoing value chains).

2.3 Enterprise Modelling and Process Orientation 41

Fig. 2.9. Value system

In order to realize collaboration between suppliers, the manufacturer, chan-
nel companies, and buyers, many activities have to be performed in a coordi-
nated fashion. The manufacturing enterprise E needs to negotiate a contract
with each supplier, and the flow of incoming raw material must be planned
and controlled properly. As a result, there are multiple interactions between
the enterprise and its business partners.

Although the ordering of the value chains indicates that the flow of infor-
mation and goods is from left to right, that is, from supplier to enterprise E,
in this case the start of interaction is in the opposite direction, that is, from E
to the supplier. The ordering of the value chains in a value system loosely fol-
low the overall impression the modeller wants to communicate with the value
system. The concrete interactions that realize the business collaboration are
complex interactions.

In the sample value system shown, the overall flow of goods and informa-
tion is from left to right. There are, however, also interactions in the opposite
direction. For instance, the ordering of raw material by the enterprise E from
Supplier 1 is realized by an interaction between these companies that origi-
nates from E. This interaction is performed if the need for raw material is
determined.

This situation is depicted in Figure 2.10, in which the logical ordering of
the value chains in a subset of the value system shown above in Figure 2.9
is enriched by arrows between the value chains, representing interactions be-
tween Enterprise E and Suppliers 1 and 2.

The value chain of a company subsumes all activities that the enterprise
conducts to fulfill its business goals. The organization of the business functions
within a value chain is shown in Figure 2.11. (Porter uses the term activity
for these highest-level business functions. To provide a consistent terminology
and to be in line with business process terminology, the term business function
is used in this book.) The value chain is based on a functional organization
of an enterprise, where the activities that are conducted are organized into
business functions.

From a business administration point of view, the business functions that
a company performs can be partitioned into primary functions and support

42 2 Evolution of Enterprise Systems Architectures

Fig. 2.10. Value system with interactions represented by arcs

Fig. 2.11. Internal structure of value chain

functions. Primary functions contribute directly to the competitive advantage
of the company, while secondary functions provide the environment in which
the primary functions can be performed efficiently. The secondary business
functions include human resources, technology development, procurement,
and the infrastructure, all of which are required for supporting the primary
business functions.

All functions that a company performs need to contribute to the success of
the company, and the margin is the difference between the resources invested
and the revenue generated by the company. The primary business functions
of a value chain are as follows.

• Inbound Logistics: Business functions that collectively make sure the com-
pany receives raw material, goods and information, required for perform-
ing its business. For instance, in order to realize inbound logistics, a set
of suppliers needs to be identified, contracts need to be negotiated, and
operational procedures need to be in place. Inbound logistics interact sig-
nificantly with business partners to request quotations, to collect and select

2.3 Enterprise Modelling and Process Orientation 43

offers, to negotiate contracts, to organize transportation, and to manage
incoming goods and information.

• Operations: Operations aggregate business functions responsible for pro-
ducing added-value products that contribute directly to the revenue of the
company. In a manufacturing company, the products are produced by the
operations business function.

• Outbound Logistics: Once products are manufactured, outbound logistics
take care of distributing these products to warehouses or other distributing
centres so that they can be distributed to the customers.

• Marketing and Sales: In marketing and sales, the business functions for
marketing the company’s products and for selling them in a competitive
market are organized. The typical function in this primary business func-
tion is organizing and conducting a campaign to market a new product.

• Services: Once a product is sold, the company needs to keep in touch
with buyers, both to cater to problems with the sold product and to pro-
vide valuable customer information for developing and marketing future
products.

While Porter explains very well the functional decomposition of business func-
tions, he does not identify the role of processes, although processes fit very
well into the value chain approach. Below, the relationships of business func-
tions that a firm performs in the context of a value system are identified and
captured in business processes.

Due to the complexity inherent in large-scale organizations, the granularity
of business processes needs to be in line with the particular goals associated
with the business function that a particular business process supports. By
doing so, a complete picture of the work conducted by a company and the
processes that contribute to it can be developed.

While the approach by Porter is tailored towards traditional enterprises,
for instance, manufacturing, there is a rich set of extensions of Porter’s work.
Due to the technical scope of this book, these extensions and the business
implications of value chains and value systems are not discussed in detail.
However, value systems provide an appropriate holistic setting for the business
administration background of business process management.

2.3.2 Organizational Business Processes

The early 1990s saw process orientation as a strong development not only to
capture the activities a company performs, but also to study and improve the
relationships between these activities.

The book Reengineering the Corporation, which was briefly discussed in
Section 1.1, proved instrumental in this development. The general approach of
business process reengineering is a holistic view on an enterprise where busi-
ness processes are the main instrument for organizing its operations. Business

44 2 Evolution of Enterprise Systems Architectures

process reengineering is based on the understanding that the products and ser-
vices a company offers to the market are provided through business processes,
and a radical redesign of these processes is the road to success.

Process orientation is based on a critical analysis of Taylorism as a concept
to organize work, originally introduced by Frederick Taylor to improve indus-
trial efficiency. This approach uses functional breakdown of complex work to
small granularities, so that a highly specialized work force can efficiently con-
duct these work units of small granularity. Taylorism has been very successful
in manufacturing and has, as such, fuelled the industrial revolution in the late
eighteenth and early nineteenth century considerably.

Small-grained activities conducted by highly specialized personnel require
many hand-overs of work in order to process a given task. In early manufac-
turing in the late eighteenth and early nineteenth century the products were
typically assembled in a few steps only, so that hand-overs of work did not in-
troduce significant delays. In addition, the task were of a rather simple nature,
so that no context information on previously conducted steps was required for
a particular worker.

Using Taylorism to organize work in modern organizations proved ineffi-
cient, because the steps during a business process are often related to each
other. Context information on the complete case is required during the pro-
cess. The hand-overs of work cause a major problem, since each worker in-
volved requires knowledge on the overall case. For this reason, the functional
breakdown of work in fine-granular pieces that proved effective in early man-
ufacturing proves inefficient in modern business organizations that mainly
process information.

From a process perspective, it is instrumental to combining multiple units
of work of small granularity into work units of larger granularity. Thereby, the
hand-over of work can be reduced. But this approach requires workers to have
broad skills and competencies, that is, it requires knowledge workers who have
a broad understanding of the context and the ultimate goals of their work.

At an organizational level, process orientation has led to the characteriza-
tion of the operations of an enterprise using business processes. While there
are different approaches, they have in common the fact that the top-level busi-
ness processes are expressed in an informal way, often even in plain English
text. Also each enterprise should not have more than about a dozen organi-
zational business processes. These processes are often described by the same
symbols as those used for value systems, but the reader should be aware of
the fact that different levels of abstraction are in place.

The structure of organization-level business process management is shown
in Figure 2.12. The business process management space is influenced by the
business strategy of the enterprise, that is, by the target markets, by business
strategies opening new opportunities, and, in general, by the overall strategic
goals of the enterprise.

Information systems, shown in the lower part of Figure 2.12, are valu-
able assets that knowledge workers can take advantage of. An important as-

2.3 Enterprise Modelling and Process Orientation 45

pect of business process reengineering is combining small granular functions
conducted by several persons into functional units of larger granularity, and
supporting knowledge workers in performing these tasks with dedicated infor-
mation systems.

Business process management is based on the resources of an enterprise,
most prominently its knowledge workers and information systems. Informa-
tion systems enable knowledge workers to perform business process activities
in an effective manner. Information systems also have implications on busi-
ness processes, since some business processes might not be possible without
appropriate information system support.

Stakeholders are among the most important influential factors of business
process management. The stakeholder box in the left hand side in Figure 2.12
represents the fact that stakeholders have implications on the organizational
business processes. But business processes also have implications on the stake-
holders, as shown in that figure, too. Stakeholders include external business
partners, customers, and the personnel of the enterprise.

Fig. 2.12. Organization-level business process management, based on Schmelzer
and Sesselmann (2010)

The internal structure of the business process management box in Fig-
ure 2.12 contains the organizational business processes of an enterprise. Sam-
ple organizational business processes for a manufacturing company are inno-

46 2 Evolution of Enterprise Systems Architectures

vation process, product planning process, product development process and,
purchase order process and service process.

Fig. 2.13. Forms-based description of organizational business process, based on
Schmelzer and Sesselmann (2010)

The organizational business processes are influenced by a number of activ-
ities that the company performs: the management, the organization, the con-
trolling, and the optimization of business processes, as shown in Figure 2.12.

Management and organization include activities for the identification of
business processes, as well as the selection of roles and persons responsible, and
the rollout of the implemented business processes in the enterprise. Setting
up a business process management team and, if desired, installing a Chief
Process Officer in the management of the enterprise are additional activities.

Each business process contributes to one or more business goals. To gain
information on how efficient the business processes are actually conducted
and whether the business goals are actually met by the business processes,
controlling activities are conducted. Key performance indicators of business
processes are determined, for instance technical indicators, such as average
response time and throughput, but also domain-specific aspects, such as, for
instance, reduction of error rate, and cost savings.

Controlling also develops methods to measure key performance indicators
and to actually install them in the operational business processes. Valuable
information on shortcomings of current business processes can be found, which
can be used to continuously improve and optimize them.

Organizational business processes have a large granularity, and they in-
volve many persons and activities in a company. Therefore, they are typically
described in a textual form, often using a forms-based approach. This means
that individual process activities and their orderings are not addressed. The
elements of these forms include the name of the business process, a person
responsible for it, the objects addressed, the inputs and the results of the

2.3 Enterprise Modelling and Process Orientation 47

process, and the suppliers and customers of the process, both of which are
organizational business processes.

A sample description of an organizational business process is shown in
Figure 2.13, where a product development process is described. This process
takes input and generates output that is of value to the enterprise. From this
point of view, it is a valid characterization of a business process.

However, at this top level, the business process is treated as a black box,
so that no details on the internal structure of the process are given. As a
consequence, the property that a business process consists of activities with
execution constraints does not immediately apply. This definition is appropri-
ate at a lower level of abstraction where operational business processes are at
the centre of attention.

To represent the relationships between the organizational business pro-
cesses, their dependencies are depicted by a process landscape diagram. It
contains each organizational business process as a block; dependencies are
represented by arrows. There are different forms of dependencies, including
information transfer and the transfer of physical goods.

The interfaces of the organizational business processes need to be designed
carefully, since unclear interfaces are a source of inefficiency. These interfaces
need to be broken down into interfaces of the operational business processes
that actually realize the organizational business process. A process landscape

Fig. 2.14. Process landscape relating organizational business processes with stake-
holders, based on Schmelzer and Sesselmann (2010)

is represented in Figure 2.14, showing the main business processes of a man-
ufacturing company and their dependencies. Stakeholders such as customers
are also depicted, as are interfaces, because the external behaviour of the

48 2 Evolution of Enterprise Systems Architectures

company—which to a large extent is responsible for the commercial success
of the company—is specified at exactly these interfaces.

2.3.3 Business-to-Business Processes

The business motivation behind interacting business processes stems from
value systems, which represent collaborations between the value chains of
multiple companies. These high-level collaborations are realized by interacting
business processes, each of which is run by one company in a business to
business process scenario. This section studies interactions between business
processes performed by different companies.

For the sake of concreteness, this section uses an example from the area of
order processing, described as follows. A buyer orders goods from a reseller,
who acts as an intermediary. The reseller sends a respective product request to
a manufacturer, who delivers to product to the buyer. In addition, the reseller
asks a payment organization to take care of the billing. The value chain of
this business scenario is shown in Figure 2.15. Notice that the arrangement of
the value chains in this figure is somewhat arbitrary, because there are various
interactions between the participating organizations.

Fig. 2.15. Sample value system involving multiple companies

Figure 2.16 shows the interactions between the business partners in more
detail. Reseller-B acts as a virtual company that forwards the payment infor-
mation to a payment organization and that forwards the product request to
the manufacturer. The manufacturer then ships the products to the buyer.
The value system shown in Figure 2.15 on a high level of abstraction is de-
tailed in Figure 2.16. Note that for each value chain in the value system shown
in Figure 2.15 there is a participant in the business-to-business collaboration,
detailing its internal structure and its contribution to the collaboration.

There are many interesting issues to study: how do we make sure that the
business-to-business process created by putting together a set of existing busi-
ness processes really fulfills its requirements? Structural criteria, for instance,
absence from deadlock, need to be valid for these processes.

The problem is aggravated by the fact that internal business processes are
an important asset of enterprises. Therefore, few enterprises like to expose
their internal processes to the outside world. This means that the properties

2.4 Workflow Management 49

Fig. 2.16. Example of business-to-business collaboration through interacting busi-
ness processes

of the overall business-to-business collaboration cannot be based on the actual
detailed local processes run by the enterprises, but rather on the externally
visible behaviour and the associated models to represent it. There are different
approaches to tackle this problem, some of which are discussed in Chapter 5.

2.4 Workflow Management

The developments in enterprise software architectures and in organization-
level business process management laid out in the previous sections led to
workflow management. The important achievement of workflow management
is the explicit representation of process structures in process models and the
controlled enactment of business processes according to these models.

The model-driven approach facilitates a high degree of flexibility, because
process models can be adapted to fulfill new requirements, and the modified
process models can immediately be used to enact business processes.

In the 1990s, the Workflow Management Coalition (WfMC) was founded
to bundle workflow related activities by vendors, users, and academia. The

50 2 Evolution of Enterprise Systems Architectures

Workflow Management Coalition defines workflows and workflow management
systems as follows.

Definition 2.2 Workflow is the automation of a business process, in whole
or in part, during which documents, information, or tasks are passed from one
participant to another for action, according to a set of procedural rules. �

Definition 2.3 A workflow management system is a software system that
defines, creates, and manages the execution of workflows through the use of
software, running on one or more workflow engines, which is able to inter-
pret the process definition, interact with workflow participants, and, where
required, invoke the use of IT tools and applications. �

Workflow technology is capable of supporting business processes within a
given application system or between a set of application systems, effectively
integrating these systems. But workflow technology can also be used to enact
business processes in which humans are actively involved, thus improving the
collaboration between knowledge workers.

2.4.1 Workflows and Applications

Traditionally, application systems are designed and implemented not only by
coding functions that the application carries out, but also by coding the or-
dering of these functions, that is, the process logic realized by the application.

With growing complexity of the application systems and increasing de-
mand for adapting application systems to new requirements, the coding of
process logic in applications has a severe drawback: any modification of the
process realized by the application requires a modification of the programming
code. The code not only needs to be modified, but also tested and maintained,
so that each modification consumes considerable resources.

Workflow management technology can be used to ease the modification of
the process logic realized by applications. The functions of an application sys-
tem are the steps in the workflow, and a workflow component uses a workflow
model to enact the functions. By modification of the process logic specified
in workflow models, the behaviour of the application system can be modified
without coding.

Today, most enterprise application systems, such as enterprise resource
planning systems, host a workflow component that facilitates the flexible cus-
tomization of business processes within these systems. Observe that instead of
the term workflow management system the term workflow component is used,
because a workflow component is not a stand-alone software system; rather,
it is embedded in the application.

Definition 2.4 A single-application workflow consists of activities and their
causal and temporal ordering that are realized by one common application
system. Multiple-application workflows contain activities that are realized by
multiple application systems, providing an integration of these systems. �

2.4 Workflow Management 51

Fig. 2.17. Single-application workflow systems architecture

The architecture of an single-application workflow system is shown in Fig-
ure 2.17. There is a dedicated workflow component that is fed with workflow
models that capture the process logic as well as technical execution informa-
tion. The workflow component uses functions realized by the application and
provides processes to the higher level, the graphical user interface.

In the case of multiple-application workflows, a dedicated workflow man-
agement system makes sure that the application systems are invoked as spec-
ified in the process model. In addition, data transfer between application
systems is also taken care of by the workflow management system.

The relationships of the subsystems involved in a workflow application
are shown in Figure 2.18. The integration of the application systems is per-
formed by the workflow management system, using adapters similar to those
used in traditional enterprise application integration scenarios. The detailed
architecture of workflow management systems will be discussed in Chapter 7.

Fig. 2.18. Multiple-application workflow systems architecture

2.4.2 System Workflows

In system workflows, the workflow activities are performed automatically by
software systems. Therefore, knowledge workers do not interact with the ap-

52 2 Evolution of Enterprise Systems Architectures

plication, and graphical user interfaces in general and work item lists in par-
ticular are not required. The execution constraints are specified in a process
model, and the workflow management system makes sure that the ordering of
calls to the software systems is in line with the process model.

Figure 2.19 shows a scenario of a system workflow, with a dedicated work-
flow management system that invokes for each activity a defined application
system. Each of these software systems provides an interface that the work-
flow management system can use, similar to the adapter in the enterprise
application integration scenario sketched above. The workflow management
system behaves like a centralized hub in an enterprise application integration
scenario, but with explicit process representation and enactment control.

Definition 2.5 A system workflow consists of activities that are implemented
by software systems without any user involvement. �

Enterprise application integration scenarios are typical candidates for sys-
tem workflows. The design and implementation of system workflows can be
regarded as a type of high-level programming, where functionality provided
by application systems characterize the building blocks that are organized
within a system workflow.

Fig. 2.19. System workflow integration scenario; a process model defines if and
when enterprise applications are invoked

In enterprise application integration platforms without a dedicated process
component, the interaction between the application systems is represented by
rules, which are used to forward messages based on their type or content.
From these rules, the overall process structure cannot be derived easily, and

2.4 Workflow Management 53

realizing change is cumbersome, because rules might trigger other rules, so
that undesired side effects can occur.

Process modelling techniques can be used to provide an explicit represen-
tation of the relationships between enterprise applications. Process models
provide the conceptual basis for defining when and under which conditions
enterprise applications are actually invoked in the context of an integration
scenario.

Therefore, a dedicated process component responsible for modelling and
enacting processes in enterprise application integration scenarios is adequate.
Workflow management systems are well equipped to act as this component.
Today, most enterprise application integration middleware systems host a ded-
icated workflow component.

2.4.3 Human Interaction Workflows

In order to introduce human interaction workflows, it is useful to discuss its
development. An early predecessor of human interaction workflow manage-
ment systems is the office automation system, developed in the early 1980s.
The goal of these systems was supporting the organization and the collabora-
tion of work involving multiple persons. Until then, supporting office work of
individuals was at the centre of attention. It turned out that it is not sufficient
to equip workers with adequate software for their individual workplace, but
also to consider the relationship of the work activities that are performed by
different workers and provide support for their collaboration.

By shared, consolidated data repositories and by improving the hand-over
of work between employees, a considerable speed-up in office procedures could
be realized. However, the scope of office automation was still quite narrow:
workers of a given organization process information objects, primarily using
forms-based applications.

Today, human interaction workflows typically realize parts of a larger busi-
ness process that has automated as well as nonautomated parts. The goal of
human interaction workflows is to effectively support the automated parts of
business processes by actively controlling the activities performed according
to process models.

Definition 2.6 Workflows in which humans are actively involved and inter-
act with information systems are called human interaction workflows. �

Workflow management systems also take into account the organization in
which the process runs. In particular, for each step in a workflow process, the
role responsible for executing is defined. Roles are groups of employees that
qualify for this responsibility.

The role concept introduces an additional type of flexibility, because at
run time of the workflow, a person currently available can be offered to work
on the respective activity, and one of the persons can select the activity to

54 2 Evolution of Enterprise Systems Architectures

actually start working on it. Organizational aspects are discussed in more
detail in Chapter 3.

Goals attributed to human interaction workflows are reduction of idle pe-
riods, avoiding redundant work such as the entering of data multiple times by
different knowledge workers, and improved integration of human work with
underlying information systems.

Fig. 2.20. Sample human interaction workflow

A sample human interaction workflow is shown in Figure 2.20. In addition
to the activities and their logical ordering in a process model, the information
system required to enact the workflow for each activity is represented. This
information is required, since the workflow management system at run time
will invoke these applications and will feed the required process data to these
applications.

In the workflow at hand, first an order is stored in an order management
system. Then the inventory is checked to find out whether the order can be
fulfilled. To keep the process simple, the process design assumes that the order
can be fulfilled, that is, there is no alternative modelled if this is not the case.
Then, concurrently, the shipment is prepared, the parcel is handed to the
shipper, and the invoice is prepared and sent. The fulfilled order is archived,
completing the human interaction workflow.

Human interaction workflows require particular graphical user interface
concepts. The main concept is the work item list. Knowledge workers inter-
act with the system using work item lists, which are also called in-baskets.
Whenever a knowledge worker can perform a process activity, he or she is
informed by an item in his or her work item list. When the item is selected,
the respective application is started, and the input data is provided. When

2.4 Workflow Management 55

the activity is completed, the knowledge worker informs the workflow applica-
tion. The workflow management system then computes the current state and
determines the activities next due.

2.4.4 Challenges for Workflow Management

As discussed in the previous sections, workflow management has considerable
benefits due to explicit process representation and process enactment control.
However, workflow management has also spawned criticism that has led to a
broader perspective in business process modelling, organization, and control
realized by business process management.

Lack of Adequate Support for Knowledge Workers

In contrast to many developments in software architecture and technology,
workflow management systems have massive effects on the daily work for their
users. The method of data storage and whether the program was developed
with a procedural programming language or an object oriented programming
language are relevant only for system designers and developers; these imple-
mentation aspects do not matter for the users of these systems. Therefore,
special care has to be taken in the rollout of workflow applications; early par-
ticipation of users in the design of these systems is important to avoid user
acceptance issues.

Workflow management systems represent not only processes but also the
organizational environment in which these processes are executed. This means
that persons are represented by their skills, competences, and organizational
positioning. This information is used to select persons to perform certain
activities. The active selection of persons by the workflow management system
has not been considered appropriate, since human workers felt that a machine
burdened them with additional work. This feeling might also be due to crude
interfaces of early workflow management systems.

The role of knowledge workers is another area where traditional workflow
management systems scored low. Workflow models prescribe the process flow,
and a workflow management system makes sure that the workflow is performed
just as it is described. This also means that there is little room for creativity
for the knowledge worker. Any process instance that has not been envisioned
by the process designer cannot be realized. This might lead to situations where
certain parts of the overall business process are not handled by the workflow
management system. Sometimes, even paper-based solutions were used by the
knowledge workers, leading to inconsistent states in the overall process.

These shortcomings of traditional workflow management systems have
spawned a number of developments, some of which are reported in Chapter 7.

56 2 Evolution of Enterprise Systems Architectures

Technical Integration Challenges

While system workflows are well equipped to support the process aspect of
enterprise application integration scenarios, the same technical integration
problems need to be solved in system workflow projects as those in traditional
enterprise application integration projects.

Application systems that need to be integrated are typically not equipped
with well-documented interfaces that can be used to get hold of the required
functionality. Functionality of application systems might also be implemented
in the graphical user interfaces, so that low-level implementation work is re-
quired to access the application system functionality.

Another important source of trouble is relationships between different ap-
plications at the code level. Direct invocation between software systems is an
example of these relationships, so that an invocation of an application sys-
tem automatically spawns off an invocation of another application system. In
these settings, the overall process flow is in part realized at the application
code level, so that the workflow management system is capable of controlling
only parts of the actual process flow, but not the complete process.

The granularity of the workflow activities and the granularity of the func-
tionality provided by the underlying application systems might be different.
Fine-granular business activities might have been designed in the process
model that cannot be realized, because the underlying application system
only provides coarse-grained functionality. In some cases, the interface to the
application can be modified so that fine-grained functionality is available.
This alternative is likely to incur considerable cost, or it might be impossi-
ble for some applications. Another alternative is changing the granularity of
the business activities. In this case, certain properties of the process might
not be realizable—for instance, the concurrent execution of two fine-granular
activities. As a result, the run time of the workflow will not be optimal.

Service-oriented architectures and service-enabling of legacy applications
are important concepts currently being investigated to address these technical
problems.

Process Support Without Workflow Systems

Not all environments ask for a workflow management system. In cases where
no changes to the process structure are envisioned, a coding of the process
flow can be an attractive and adequate choice.

In database administration there are predefined procedures that are en-
acted following a process model. Similar developments can be found in pub-
lishing environments where print workflow is a common tool to describe and
perform the steps that lead to publishable results. Most enterprise resource
planning systems feature a dedicated workflow component that allows us to
model new processes and enact them in the system environment. Due to their

2.5 Enterprise Services Computing 57

close link to particular applications, these systems are also called embedded
workflow management systems.

Business processes are also realized in online shops, such as train reserva-
tion systems or electronic book stores, where steps of an interaction process
are depicted in graphical form. This graphical representation guides the user
in his interaction with the Web site. In a train reservation online shop, for
instance, there are interaction steps for querying train connections, for get-
ting detailed information on the connections, for selecting connections, for
providing payment information, and for booking and printing the train ticket.
Since this type of interaction process can easily be realized using traditional
Web page design, workflow management systems are not required. However,
these examples show that the business process paradigm is helpful also in
application scenarios that do not require dedicated workflow support.

Enterprise application systems, such as enterprise resource planning sys-
tems, realize literally thousands of business processes. These processes can be
customized to fit the particular needs of the company that runs the system. In
most cases, the business processes are realized within the system, so no inte-
gration issues emerge. If the predefined business processes cannot be tailored
in a way that fits the needs of the company, then integrated process modelling
functionality can be used to model new processes.

2.5 Enterprise Services Computing

Service-oriented computing is one of the major trends both in business en-
gineering and software technology. The main idea of service orientation is to
capture business relevant functionality as a service and provide sufficiently
detailed information so that customers can use it. This definition of service
orientation goes well beyond services that are realized by software systems.

Consider a real-world service, for example, one to fix a car. The service
the garage provides needs to be specified in a way that the customer can find
and use. Once the car is fixed, the customer pays the bill and the service
is completed. There are specific registries for finding real-world services, for
instance, yellow page directories. This general idea of service orientation is
applied to services provided by software systems. The requirements that apply
to real-world services also need to be satisfied for services realized by software
systems.

Service-oriented computing uses well-specified service interfaces that rely
on common interface definition languages to combine several services to new
service-oriented applications. If service-oriented computing is used in large-
scale environments, an organizing principle is useful; this principle is intro-
duced by service-oriented architectures, discussed next.

58 2 Evolution of Enterprise Systems Architectures

2.5.1 Service-Oriented Architectures

Steve Burbeck, one of the early advocates of service-oriented architectures,
defines service-orientation as follows.

Services are loosely-coupled computing tasks communicating over
the internet that play a growing part in business-to-business interac-
tions. [. . .] We reserve the term service-oriented for architectures that
focus on how services are described and organized to support their
dynamic, automated discovery and use. We do not address systems
based on manually hardwired interactions, such as those used in EDI
systems.

In this definition, services communicate over the Internet. This means that
services are expected to be used in business-to-business scenarios, where the
participants are connected by the Internet. Although not explicitly ruled out,
services that are provided and used within a company do not fully qualify in
Burbeck’s definition.

The second interesting aspect of this definition is the high degree of flexi-
bility provided by late, run time finding and binding of services. Matching a
service request to a set of service specifications in a service registry is a com-
plex task, especially if automated discovery and use are sought, as implied by
the definition.

Burbeck’s definition mirrors the long-term vision of service-oriented ar-
chitectures. But this architectural style is not only useful in Internet set-
tings, where the services are provided by different organizations in business-
to-business scenarios, but also in intracompany settings. Therefore this book
adopts the following definitions.

Definition 2.7 A service captures functionality with a business value that is
ready to be used. Services are made available by service providers. A service
requires a service description that can be accessed and understood by potential
service requestors. Software services are services that are realized by software
systems.

Service-oriented architectures are software architectures that provide an
environment for describing and finding software services, and for binding to
services. Descriptions of software services provide a level of detail that facili-
tates service requestors to bind to and invoke them. �

Service-oriented architectures are especially important in environments where
many services are available and where the set of available services changes over
time. Burbeck investigates this aspect in more detail and states as follows.

To work easily, flexibly, and well together, services must be based
on shared organizing principles that constitute a service-oriented ar-
chitecture.

2.5 Enterprise Services Computing 59

In a service-oriented architecture, organizations may use services offered by
other companies, and companies may provide services to a growing services
market. The vision is for information systems to use business functionality
of service providers, so that reuse of functionality is realized at a level of
coarse granularity. New applications can be built with less effort and existing
applications can be efficiently adapted to changing requirements, reducing
maintenance and development cost.

Fig. 2.21. Roles in service-oriented architectures

Figure 2.21 depicts the classical service-oriented architecture, as intro-
duced by Burbeck. This architecture is based on roles that participating orga-
nizations can play. Service providers offer services. To enable service requestors
to find and use them, they are specified, and their descriptions are stored in
a service registry.

The interactions between the three primary roles in service-oriented archi-
tecture are publish, request/reply, and bind. The service provider publishes
service specifications in a service registry, and the service requestor searches
the service registry and finds suitable services. The service registry provides
the service requestor with information that allows the service requestor to
bind to the service and, eventually, invoke it.

In this section, service-oriented computing is characterized in an informal
way. Web services as the current implementation of service-oriented architec-
tures will be covered in Chapter 7.

2.5.2 Enterprise Services

In enterprise computing environments, the functionality of application systems
can be described and provided by services. Figure 2.22 visualizes a service-
enabled application system. The functionality of the application system is
provided through services, depicted by semicircles on top of the application
system. Services need to be specified in a way that the specification of services

60 2 Evolution of Enterprise Systems Architectures

Fig. 2.22. Service-enabled application system

is decoupled from their implementation. Detailed specification of services fa-
cilitates the flexible configuration of services by composing services to achieve
complex functionality.

In an existing application built with several services provided by different
business partners, the partners can modify the realization of their services, as
long as the service specification does not change. Based on the service speci-
fication, an improved service implementation can be integrated seamlessly in
a service-based application. New potential business partners can use publicly
available service specifications to offer their own implementations of the ser-
vices. As a result, individual parts of a complex service-based application can
be exchanged without redesigning the application.

Service orientation is also one of the main influencing factors for enterprise
application integration. Enterprise services architecture characterizes the de-
velopment of added-value applications that take advantage of existing func-
tionality provided through standardized interfaces.

Enterprise services architecture is based on the understanding that com-
plex applications will be increasingly built on top of existing functionality.
This functionality is provided by legacy systems, which are an important as-
set of companies. Making this functionality reusable is a challenging task. The
idea is to encapsulate the functionality of existing software systems in a ser-
vice, realizing enterprise services. Enterprise services can be used to realize
enterprise application integration scenarios.

As pointed out by Woods, there are a number of business drivers that
foster the development of enterprise services. The main driver is change: the
ability to change the enterprise application system infrastructure is a compet-
itive advantage for an enterprise. There are a number of current trends that
motivate the development of enterprise services:

• Rise in the power of the customer : Value-added services are essential, be-
cause customers can change suppliers easily, without much effort. Positive
user experience is important, as the success of online auctioning sites and
online shops with community building indicates.

2.5 Enterprise Services Computing 61

• Systems transparency : The Internet has brought customers and suppliers
inside a company’s IT infrastructure. Weak or missing integration of en-
terprise application systems will be immediately exposed to the customer.

• Rise in computer mediated interaction with customers and suppliers: Com-
panies differentiate themselves on their service to their customers. Dan
Woods indicates that “Outsiders can now peer into the glass house of the
data centre and see if it is a mess.” An example of a messy situation is
one where a customer cannot be serviced well, because the client inter-
face provides information only about one aspect of the customer, and the
other aspects are hidden in application systems that are not accessible.
Due to lack of integration, this valuable information is not available, so
the customer does not feel well cared for.

• Products as services: Corporations are increasingly perceived by the set
of services they provide. These services exposed to the market can be
realized by enterprise services, which provided by the back end application
systems of the enterprise. But also services provided by third parties can
be integrated, so that better applications and end user services can be
provided to the customer.

• Multi-tier applications: There is also a trend towards multi-tier applica-
tions, where each tier is provided by a different enterprise. This means that
the tier 1 company provides value-added services directly to a customer,
using the tier 2 services from a set of business partner companies. These
companies might use tier 3 services provided by other companies. By flexi-
ble integration based on the service paradigm, many new applications and
services can be realized.

Composite Service-Based Applications

With this background in enterprise services architectures, an intra-company
scenario is sketched, where new applications should be built on top of an exist-
ing customer relationship management system, a supply chain management
system, and an enterprise resource planning system. These systems expose
enterprise services via standardized interfaces. The applications built on top
are known as composite applications, as shown in Figure 2.23. Composite
applications invoke enterprise services that provide the functionality of the
underlying back-end systems. User interaction is realized by dedicated graph-
ical user interfaces that sit on top of composite applications.

Technological advance has paved the way for enterprise services. The main
cornerstones of these developments are the full suites of enterprise applica-
tions that are available off-the-shelf today. There are rich middleware and
enterprise application integration products that can be used for technical in-
tegration, most of which host a dedicated workflow component for process
enactment. To integrate multiple application systems, data transformation is
essential. With the advent of the extensible markup language (XML), there is
an industry standard for data and message format specifications. While this

62 2 Evolution of Enterprise Systems Architectures

Fig. 2.23. Enterprise systems expose functionality through enterprise services

base technology is in place, the integration logic still needs to be defined and
implemented in each integration project.

As shown in Figure 2.23, applications that use the functionality of existing
application systems are called composite applications. Processes are a key
factor in realizing composite applications, because they provide a link from
high-level business processes to the information technology layer.

The structure of composite applications can in many cases be expressed
as a business process. The activities of these processes are implemented by
invoking enterprise services. Additional execution constraints like conditional
execution can be represented by business process models; these can be realized
by process orchestrations.

Enterprise services can also be used to realize business interactions of mul-
tiple enterprises. In multi-tier scenarios for realizing innovative applications,
interactions between the software systems of the business partners involved
are required. These interactions are governed by a process choreography. Pro-
cess choreographies have been defined informally above; they are subject of
further investigation in Chapter 5.

While the vision for enterprise services includes business-to-business pro-
cesses, most enterprise services today are used in an intra-company setting,
where the goal is to develop composite applications on top of well-specified
business functionality represented by enterprise services.

Enterprise Services and Service-Oriented Architectures

The roles in service-oriented architectures as discussed above are not com-
pletely filled in typical enterprise scenarios. The specification of services is

2.5 Enterprise Services Computing 63

typically done by the provider of the service, that is, by the system architects
responsible for service-enabling the particular application.

The service registry is installed locally, and its access by other companies
is usually disallowed. The most striking difference to service-oriented archi-
tectures as defined by Burbeck is the absence of dynamic matchmaking. As
enterprise services are developed, they are specified and registered in a local
registry. When a new composite application is developed, the designers con-
sult the registry to find suitable services that can be used to perform certain
tasks in the composite application. This search is a manual process, which in
some cases is assisted by a taxonomy and a textual description of the services.

There are a number of hard problems in this context that are unsolved
today. One of the main problems regards the scoping of services: the func-
tionality provided by one or more application systems that is suitable for an
enterprise service. If the granularity is small, then the level of reuse is small
too, because many enterprise services need to be composed to achieve the
desired functionality.

If on the other hand the granularity is large, then there might be only
few scenarios where the enterprise service fits well and where using it makes
sense. Tailoring of services of large granularity is also not a valid option, since
extensive tailoring hampers reuse. As in many related cases, there is no general
answer to this question. The choice of a suitable service granularity depends on
the particular usage scenario and on the properties of the application systems
to integrate and the composite applications to develop.

In enterprise services architectures, each enterprise service is typically as-
sociated with exactly one application system. This is a limitation, since build-
ing an enterprise service on top of a number of related back-end application
systems involves system integration, so that reuse is simplified.

To illustrate this concept, an example is introduced. Consider a purchase
order enterprise service in which an incoming purchase order needs to be stored
in multiple back-end application systems. In this case, the enterprise service
can be used with ease, since it is invoked once by a composite application and
it automatically provides the integration of the back-end system by storing
the purchase order—with the relevant data mappings to cater to data type
heterogeneity—in the respective back-end application systems.

An integration of legacy systems can be realized within an enterprise ser-
vice. This allows using enterprise services at a higher level of granularity, so
that integration work can actually be reused in multiple composite applica-
tions.

2.5.3 Enterprise Services Bus

In a recent development, enterprise application integration middleware pro-
vides standardized software interfaces to the enterprise applications that it
integrates. As the term enterprise service bus indicates, each of these enter-

64 2 Evolution of Enterprise Systems Architectures

prise applications is then attached to this bus, which acts as a centralized
component to integrate these applications, as shown in Figure 2.24.

Fig. 2.24. Enterprise service bus

An enterprise service bus hides the heterogeneity of the enterprise appli-
cations by introducing service interfaces. To realize these service interfaces,
traditional enterprise application integration adapter technology is typically
used that is also in place in traditional enterprise application integration mid-
dleware, as discussed in Section 2.2.2.

By introducing standardized interfaces to the outside world using services,
however, an enterprise service bus goes one step beyond traditional enterprise
application integration middleware. It must not be overlooked, however, that
the term enterprise service bus is also used by software vendors to rebrand
existing technologies for marketing reasons.

2.5.4 Service Composition

To realize composite applications in service-oriented enterprise computing en-
vironments, service composition techniques are appropriate. The general prin-
ciple of service composition is depicted in Figure 2.25, where application sys-
tems in the lower part of the figure represent services that can be used to
realize composite applications.

The composite application shown uses functionality provided by a CRM
system, an SCM system, and an ERP system. The application logic realized
in the composite application defines a process consisting of three activities.
The ordering of these activities can be specified in a process model.

Since the business process is realized by a composition of services, processes
of this kind are also called service compositions. The service composition
shown in Figure 2.25 realizes a business process that can be embedded in a
composite application, which adds a graphical user interface to the service
layer.

Enterprise application integration middleware in general and enterprise
service bus middleware in particular provide a good technical basis to realize

2.6 Summary 65

Fig. 2.25. Using service composition to realize composite applications

service compositions, because they provide standardized services interfaces
that can be used in service compositions. Typical enterprise application inte-
gration middleware features a system workflow component that uses either a
proprietary format for system workflows or, if it is based on services, the Busi-
ness Process Execution Language for Web services, discussed in Chapter 7.

2.6 Summary

In this section, the technological subdomains of business process management
introduced so far are summarized. These subdomains are also related to each
other, resulting in an overall organization of business process management
that serves as an environment for the detailed discussion of individual aspects
of business process management in the remainder of this book.

The overall organization of business process management is shown in Fig-
ure 2.26. Since company strategies, business rules, and organizational business
processes are not considered in detail in this book, these organizational levels
are not represented.

At the lowest level of the business process management landscape, applica-
tions can be found. Typically, there are heterogeneous application landscapes
that contain typical enterprise applications like enterprise resource planning
systems and customer relationship management systems, but tailor-made ap-
plications to cover specific functionalities are not uncommon. The application
subdomain was covered in Section 2.1. Because each of these applications po-
tentially hosts its data in a dedicated database, data integration issues emerge.

Integration issues are covered at the enterprise application integration
level, discussed in Section 2.2. Enterprise application integration middleware
can be used to realize adapters for applications that hide their heterogeneity

66 2 Evolution of Enterprise Systems Architectures

Fig. 2.26. Business process management landscape

from one another and, thus, solve the integration problem. Data mapping is
an essential part of the realization of these adapters.

In modern enterprise application infrastructures based on the service-
orientation paradigm, the functionality of enterprise applications is provided
through services. Therefore the concepts introduced in Section 2.5 can be
used in enterprise application integration. In Figure 2.26, it is assumed that

2.6 Summary 67

the customer relationship management system provides a service interface,
which can be used by the upper layers.

Composite applications use the functionality provided by multiple appli-
cation systems. In order to do this, composite applications invoke enterprise
applications, either by directly using standardized interfaces or via enterprise
application integration middleware. The invocation behaviour of composite
applications can be described as a system workflow. There are also traditional
implementation strategies for composite applications, but flexible response to
change and well-specified behaviour by explicit process models are important
advantages of using system workflow technology. These aspects have been dis-
cussed in Section 2.4 in the context of system workflows and in Section 2.5 in
the context of service-oriented computing.

Composite applications can have dedicated user interfaces, but they can
also expose service interfaces to be used by higher levels. In Figure 2.26, a
composite application realizes a value-added service described by a service
interface that makes it usable to the higher levels.

The next level contains human interaction workflows. The activities of
human interaction workflows can be associated with knowledge workers, but
there can also be activities that are realized by application systems. The
example shown in the figure realizes an activity by a composite application
that realizes a system workflow.

Activities in human interaction workflows can also be part of a business-
to-business process interaction. For instance, activities can send messages to
or receive messages from business partners. The interaction behaviour of a
set of business processes was discussed in Section 2.3; they will be further
investigated in Chapter 5.

While the scenario sketched organizes the business process management
area from a technical point of view, different variations are possible. For in-
stance, system workflows can also interact with processes run by business
partners, and not only with human interaction workflows.

This characterization of the technical aspects of business process man-
agement deliberately abstracts from business strategies, goals, and organi-
zational business processes. However, business-to-business processes, human
interaction workflows, and system workflows are associated with operational
business processes. Therefore, they contribute to organizational business pro-
cesses and, eventually, to the business goals and the realization of the business
strategies.

Bibliographical Notes

Porter (1998) focused on the operation of enterprises and the interaction be-
tween business partners from a high-level perspective. To some extent, Porter,
with his holistic view on the activities an enterprise performs, paved the way
for process orientation. The high-level business functions of value chains are

68 2 Evolution of Enterprise Systems Architectures

broken down to smaller-grained business functions, where the granularity is
subject to design decision, indicated by the observation that “appropriate
degree of disaggregation depends on the economics of the activities and the
purposes for which the value chain is being analyzed.”

Process orientation dates back to as early as 1932, when Fritz Nordsieck
looked at the goal-oriented cooperation of workers in an organization; see
Nordsieck (1932). Based on his work, Erich Kosiol developed organizational
principles for corporations in Kosiol (1962), laying an early foundation for
process orientation.

Hammer and Champy (1993) added to this work by introducing process
orientation as a new paradigm of how enterprises conduct their business, also
regarding achievements in information technology. While their approach to
business process reengineering postulates a radical redesign, in many cases
evolutionary approaches that regard organizational, human, and sociological
factors prove more appropriate. Taylorism as an organizing principle for or-
ganizations is introduced by Taylor (1967). Smith and Fingar (2006) takes
a business-oriented view on business process management by investigating
strategic decisions made by enterprises, such as mergers and acquisitions, and
by discussing the role of business process management in coping with the
resulting challenges.

Schmelzer and Sesselmann (2010) looks at business process management
from a business administration and practical point of view. The identification
of business processes, the organizational settings in which business processes
are enacted and controlled, and the introduction of business processes in large
organization is described.

Becker et al. (2011) investigates mainly organizational aspects of business
process management by looking at process modelling, analysis, and optimiza-
tion from a practical business perspective. In the business-focused business
process management literature, information technology in general and soft-
ware systems in particular do not play an important role.

Major principles in computer science that are also realized by the informa-
tion systems architectures are separation of concerns, introduced by Dijkstra
(1982), and information hiding identified by Parnas (1972).

There are excellent books on the subsystems discussed in the evolution
of information systems. Textbooks on operating systems include Tanenbaum
(2007), Silberschatz and Galvin (2008), and Stallings (2004). Ramakrishnan
and Gehrke (2002), O’Neil and O’Neil (2000), and Weikum and Vossen (2001)
provide a thorough explanation of database technology.

Georgakopoulos et al. (1995) provide an overview on workflow manage-
ment. Workflow management from the perspective of a commercial workflow
product is introduced by Leymann and Roller (1999); in particular, the term
production workflow was coined in this book as a highly repetitive and auto-
mated realization of a core business process.

Wil van der Aalst et al. (2003a) provides a survey of business process
management including the business process lifecycle discussed above. In the

2.6 Summary 69

last decade, process mining has emerged as an important field of research
that investigates different types of relationships between process models and
process execution information. This book does not address process mining;
instead we recommend the excellent text book Process Mining by Wil van
der Aalst, who presents the current state of the art in all aspects related to
process mining, van der Aalst (2011). The ProM framework on process mining
and analysis is also addressed in van der Aalst et al. (2007). Evaluation of
business processes from a business perspective is discussed in Schmelzer and
Sesselmann (2010).

A volume on different aspects of process-aware information systems is
edited by Dumas et al. (2005). The International Conference on Business
Process Management series is the prime academic venues for research in busi-
ness process management. The conference proceedings are available as van der
Aalst et al. (2003b), Desel et al. (2004), van der Aalst et al. (2005a), Dustdar
et al. (2006), Alonso et al. (2007), Dumas et al. (2008), Dayal et al. (2009),
Hull et al. (2010), and Rinderle-Ma et al. (2011).

Burbeck (2000) introduces roles in service-oriented architectures: service
provider, service requestor and service broker. Alonso et al. (2009) looks at
middleware systems in general and Web services based system integration in
particular. Woods and Mattern (2006) discusses developments at the edge of
business engineering and software technology in the context of enterprise ser-
vices architectures. Service-oriented architectures in an enterprise context are
also covered in Woods and Mattern (2006). Enterprise service bus is investi-
gated in Chappell (2004).

3

Business Process Modelling Foundation

This chapter introduces the foundation of business process modelling by inves-
tigating abstraction concepts and introducing the main subdomains of busi-
ness process modelling, namely modelling functions, processes, data, organi-
zation, and operation.

3.1 Conceptual Model and Terminology

The business process modelling space as laid out in Chapters 1 and 2 is orga-
nized using conceptual models. Figure 3.1 introduces a model of the concepts
at the core of business process management. While the terms mentioned have
been used in the previous chapters informally, the concepts behind these terms
and their relationships will now be discussed in more detail, using conceptual
models. These models are expressed in the Unified Modeling Language, an
object-oriented modelling and design language.

Business processes consist of activities whose coordinated execution real-
izes some business goal. These activities can be system activities, user inter-
action activities, or manual activities. Manual activities are not supported by
information systems. An example of a manual activity is sending a parcel to
a business partner.

User interaction activities go a step further: these are activities that knowl-
edge workers perform, using information systems. There is no physical activity
involved. An example of a human interaction activity is entering data on an
insurance claim in a call centre environment. Since humans use information
systems to perform these activities, applications with appropriate user inter-
faces need to be in place to allow effective work. These applications need to
be connected to back-end application systems that store the entered data and
make it available for future use.

Some activities that are conducted during the enactment of a business
process are of manual nature, but state changes are entered in a business

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 3,
© Springer-Verlag Berlin Heidelberg 2012

73

http://dx.doi.org/10.1007/978-3-642-28616-2_3

74 3 Business Process Modelling Foundation

process management system by means of user interaction activities. For in-
stance, the delivery of a parcel can be monitored by an information system.
Typically, the actual delivery of a parcel is acknowledged by the recipient
with her signature. The actual delivery is important information in logistics
business processes that needs to be represented properly by information sys-
tems. There are several types of events during a logistics process. These events
are often available to the user as tracking information. While the activities
are of manual nature, an information system—the tracking system—receives
information on the current status of the process.

Fig. 3.1. Business processes: conceptual model

System activities do not involve a human user; they are executed by in-
formation systems. An example of a system activity is retrieving stock in-
formation from a stock broker application or checking the balance of a bank
account. It is assumed that the actual parameters required for the invoca-
tion are available. If a human user provides this information, then it is a user
interaction activity. Both types of activities require access to the respective
software systems.

Certain parts of a business process can be enacted by workflow technology.
A workflow management system can make sure that the activities of a business
process are performed in the order specified, and that the information systems
are invoked to realize the business functionality. This relationship between
business processes and workflows is represented by an association between
the respective classes. We argue that workflow is not a subclass of business
process, since a workflow realizes a part of a business process, so a workflow
is not in an “is-a” relationship with a business process, but is an association.

With regard to the types of activities mentioned, system activities are as-
sociated with workflows, since system activities can participate in any kind

3.2 Abstraction Concepts 75

of workflow, system workflow or human interaction workflow. User interac-
tion activities and manual activities, however, can only participate in human
interaction workflows.

3.2 Abstraction Concepts

To capture the complexity in business process management, different abstrac-
tion concepts are introduced. A traditional abstraction concept in computer
science is the separation of modelling levels, from instance level to model level
to metamodel level, denoted by horizontal abstraction. Horizontal abstraction
concepts in business process management are discussed in Section 3.2.1.

Even when using horizontal abstraction, separate subdomains need to be
investigated. In order to follow the divide-and-conquer approach, these subdo-
mains need to be represented separately. This abstraction mechanism is called
vertical abstraction, and is discussed in Section 3.2.2.

Aggregation can also be used to cope with complexity, motivating another
type of abstraction. At a higher level of abstraction, multiple elements of a
lower level of abstraction can be grouped and represented by a single artefact.
For example, a set of functional activities of small granularity can contribute to
a particular business function at a higher level of granularity: a coarse-grained
business function “order management” might aggregate many smaller-grained
activities, like receiving an incoming order, checking the inventory, and con-
firming the order. This type of abstraction is called aggregation abstraction,
because the coarse-grained business function aggregates activities of smaller
granularity.

Aggregation abstraction is different from horizontal abstraction, because
all activities (the small-grained and the coarse-grained) are at one horizontal
level of abstraction, for example, the instance level. Aggregation abstraction
is primarily used in the functional subdomain, where functions of smaller
granularity are combined to create functions of larger granularity.

3.2.1 Horizontal Abstraction

Along the lines of the levels of abstraction identified by the Object Manage-
ment Group, the metamodel level, the model level, and the instance level play
important roles in the design and analysis of complex systems in general and
software systems in particular. It is instructive to explain these levels in a
bottom-up order, starting with the instance level.

The instance level reflects the concrete entities that are involved in business
processes. Executed activities, concrete data values, and resources and persons
are represented at the instance level.

To organize the complexity of business process scenarios, a set of similar
entities at the instance level are identified and classified at the model level.

76 3 Business Process Modelling Foundation

For instance, a set of similar business process instances are classified and rep-
resented by a business process model. In object modelling, a set of similar
entities is represented by a class, and in data modelling using the Entity Re-
lationship approach, a set of similar entities is represented by an entity type,
and similar relationships between entity types are represented by a relation-
ship type.

Fig. 3.2. Levels of abstraction

Models are expressed in metamodels that are associated with notations,
often of a graphical nature. For instance, the Petri net metamodel defines Petri
nets to consist of places and transitions that form a directed bipartite graph.
The traditional Petri net notation associates graphical symbols with meta-
model elements. For instance, places are represented by circles, transitions by
rectangles, and the graph structure by directed edges.

In data modelling, the Entity Relationship metamodel defines entity types,
relationship types, and connections between them. Typical graphical notations
of the Entity Relationship metamodel are rectangles for entity types and di-
amonds for relationship types, connected by lines.

While often there is one graphical notation for one approach, a one-to-one
correspondence between notation and metamodel is not mandatory. In a Petri
net, the concept of a transition could also be represented by another symbol
in a graphical notation. There are different notations for representing Petri

3.2 Abstraction Concepts 77

nets, which differ in the graphical representation of transitions. While some
use rectangles, others use solid bars.

Therefore, it is important to distinguish between the concepts of a mod-
elling approach and the graphical notation used to represent these concepts.
The complete set of concepts and associations between concepts is called meta-
model. A metamodel becomes useful if there is a notation for this metamodel
that allows expressing models in a convenient way that allows communication
between stakeholders in the modelled real-world situation.

The different levels of abstraction and their relationships are shown in
Figure 3.2. A notation associated with a metamodel allows expressing the
concepts of that particular metamodel. Each model is described by a meta-
model, and is expressed in a notation associated with the metamodel.

3.2.2 Vertical Abstraction

Vertical abstraction in business process modelling is depicted in Figure 3.3,
where distinct modelling subdomains are identified. As depicted, process mod-
elling is at the centre of the modelling effort, because it also integrates the
modelling efforts that are conducted in the other subdomains.

Fig. 3.3. Business process modelling includes multiple modelling domains, inte-
grated by process modelling

Function modelling, data modelling, organization modelling, and mod-
elling of the operational information technology landscape are required to
provide a complete picture of a business process. While these subdomains are
the most important ones, additional subdomains can be defined if they are
relevant.

The functional model investigates the units of work that are being enacted
in the context of business processes. The specification of the work can be done
at different aggregation levels, from coarse-grained business functions to fine-
granular functions at the operational level that are realized by knowledge
workers and information systems.

78 3 Business Process Modelling Foundation

The specification of these functions can be informal, using English text or
formal, using syntactic or semantic specifications of functions. While informal
descriptions are mostly done at the coarse business level, more precise speci-
fications are required in the software layer when it comes to implementation
of certain functions using information systems.

The investigation and proper representation of data in business processes
is important, because decisions made during a business process depend on
particular data values. Also data dependencies between activities need to be
taken into account in process design, to avoid situations in which a function
requires certain data not available at that time.

The proper representation of the organizational structure of a company
is an important requirement. Activities in the business process can then be
associated with particular roles or departments in the organization. Many
activities in a business process are performed by or with the assistance of
information systems. The operational information technology landscape, that
is, the information systems, their relationships, and their programming in-
terfaces, needs to be represented to use the functionality provided by the
information systems.

Process modelling defines the glue between the subdomains. A process
model relates functions of a business process with execution constraints, so
that, for instance, the ordering and conditional execution of functions can
be specified. Data aspects are covered because particular process instances
may depend on the structure and value of data involved in a particular busi-
ness process. For example, in a credit approval business process, the type of
approval depends on the credit amount requested. In addition, data depen-
dencies between activities need to be taken into account in process model
design.

3.3 From Business Functions to Business Processes

As discussed in Section 2.3, value chains provide a high-level organization of
the functions that an enterprise performs. To provide a more detailed view,
these top-level business functions are broken down to functions of smaller
granularity and, ultimately, to activities of operational business processes.
Functional decomposition is the technique of choice.

A partial functional decomposition of a value chain is shown in Figure 3.4,
where a value system represents the highest level of aggregation. Each value
system consists of a number of value chains, characterized by the class diagram
on the left hand side in Figure 3.4.

The ordering of the value chains in the value system is not represented in
this structure diagram because it does not have any formal meaning. There
are complex interactions between these companies, so that, obviously, not all
activities in the supplier value chain occur before all activities conducted by
enterprise E.

3.3 From Business Functions to Business Processes 79

Fig. 3.4. Functional decomposition from value chain to business functions

The functional decomposition of the value chain of enterprise E is exem-
plified for one particular path of functions in the marketing and sales top-level
business function. Among many other functions, marketing and sales includes
a business function, OrderManagement, that contains functions related to the
management of incoming orders. Order management is decomposed further
into business functions for getting and checking orders. To check orders, they
need to be analyzed, and there are functions for simple and advanced checking
of orders.

As shown in Figure 3.4, there are different symbols for business functions
and for functions of the finest granularity: business functions are represented
by rectangles, while functions of the finest granularity are represented by
rectangles with rounded corners. Functions at the leaf level of the functional
decomposition are also called activities.

Traditionally, functional decomposition was used to describe enterprises
based on the functions they perform. As discussed in Chapter 1, concentrating
on the functions an enterprise performs and neglecting their interplay falls
short of properly representing how enterprises work. Therefore, functional
decomposition is used as first step in the representation of enterprises based
on business processes.

80 3 Business Process Modelling Foundation

Operational business processes relate activities to each other by introduc-
ing execution constraints between them. In principle, relating functions to
business processes can be applied for different granularities of business func-
tions. In case high-level business functions are considered, a textual specifica-
tion of the process is used, since concrete execution constraints between their
constituents are not relevant in coarse-grained business functions.

Consider, for instance, the business functions incoming logistics and oper-
ations. At this very coarse level of functionality, no ordering of these business
functions is feasible: both business functions are performed concurrently, and
only at a lower level of granularity does a concrete ordering make sense.

For instance, when the operations business function orders additional ma-
terial, then there are concrete activities that have a concrete ordering. Within
operations, an internal order is created and sent to incoming logistics. On ar-
rival of this order, raw material is provided to operations. In case no raw ma-
terial is available at the manufacturing company, an external order is created
and sent to a supplier of the raw material. Therefore, business processes relate
fine-grained business functions, typically the leaves of the business function
decomposition tree. Figure 2.13 illustrates how high-level business functions
can be described.

Fig. 3.5. Business functions of small granularity are organized as a business process

3.3 From Business Functions to Business Processes 81

In the example shown in Figure 3.5, the activities AnalyzeOrder, Sim-
pleCheck, and advanced check (AdvCheck) are related to each other by execu-
tion constraints. The sample business process starts with analyzing the order,
and then conducting either a simple check or an advanced check depending
on the decision made during process execution. This process has a dedicated
start event and a dedicated end event. The business process is started once
the start event occurs; when it completes, an end event occurs. Events play a
crucial role when interrelationships between business processes are expressed.

A particular business function of higher granularity (CheckOrder) consists
of fine-grained activities, which are related by execution constraints. However,
the check order business function (and the business process that realizes it) is
related to other business functions and their respective business processes.

An example showing this situation is displayed in Figure 3.6, where a
part of the value chain is shown, in particular, the business functions Receive
Request, Request Analysis, and Quota Management are shown. Since there
is a strict ordering between these business functions, an execution ordering
relation is represented.

Fig. 3.6. Related business processes, high-level view

After the business process related to receiving the request is processed, it
generates its end event. This end event is the signal for starting the second
business process, related to request analysis. Finally, the quota is prepared and
the business process completes. This discussion shows that business processes
at a lower level can be identified, as well as business processes at a higher
level, that is, those relating business functions.

The overall organization of these levels is depicted in Figure 3.7. At the
left hand side of this figure a UML structure diagram provides a conceptual
model of the entities involved. To recapitulate, each enterprise is represented
by a value chain, which consists of coarse-grained business functions that
are decomposed into smaller-grained business functions, realizing a functional
decomposition. Activities are functions of the finest granularity; they are the
building blocks of operational business processes.

When a business process is started, the business functions that it contains
need to be executed. Therefore, each activity in a business process requires an
implementation. The implementation of an activity can be based on function-
ality provided by information systems, such as registering a new customer or

82 3 Business Process Modelling Foundation

Fig. 3.7. Levels of business process management. From value systems to activity
implementations

reserving a flight. However, an activity implementation can also be provided
by a knowledge worker without using information systems.

3.4 Activity Models and Activity Instances 83

Definition 3.1 A functional decomposition of coarse-grained business func-
tions to fine-granular activities defines the functional perspective of a business
process. �

3.4 Activity Models and Activity Instances

Business functions provide a high-level, coarse-grained representation of the
work conducted by enterprises. Activities can be found in the leaves of the
functional decomposition. This section investigates how activities can be de-
scribed. In addition, the actual work conducted during business processes
has to be characterized, that is, activity instances have to be characterized.
Note that activity models represent the M1 layer of the Meta Object Facility,
while the activity instance layer corresponds to M0. Figure 3.8 shows the rela-
tionships between business functions, activity models, and activity instances.
Notice that there are activity instances for case (Smith, 123212) for all three
activity models, even though either a simple check or an advanced check is
required. This aspect will be discussed shortly.

Fig. 3.8. Activity models and activity instances

An activity model describes a set of similar activity instances, analogously
to a process model describing a set of process instances with the same struc-
ture. While process models are typically expressed in graph-like notations (to
be investigated in detail in the next chapter), activity models can be expressed
in different forms, for instance, by plain text or by some formal specification
or references to software components that implement them.

84 3 Business Process Modelling Foundation

Activity instances represent the actual work conducted during business
processes, the actual units of work. To make this discussion more concrete,
assume a process instance that represents the processing of an insurance claim
by Clara Smith on the damage amount of US $2000, submitted November 11,
2006. Let EnterClaim(Clara Smith, 2000, 11-11-2006) represent the activity
instance responsible for entering the claim in the respective software system
of the insurance company. When the company receives the claim, a process
instance is started. Within this process instance, the activity instance Enter-
Claim(Clara Smith, 2000, 11-11-2006) is started. When the claim is entered
in the system, this activity instance terminates.

Each activity instance during its lifetime is in different states. These states
and the respective state transitions can be represented by a state transition
diagram. A simple state transition diagram for activity instances is shown in
Figure 3.9. The states that an activity instance adopts during its lifetime are

Fig. 3.9. State transition diagram for activity instances

described as follows. When it is created it enters the init state; by the enable
state transition the activity instance can enter the ready state.

If a particular activity instance is not required, then the activity instance
can be skipped, represented by a skip state transition from the not started
state to the skipped state. From the ready state, the activity instance can
use the begin state transition to enter the running state. When the activity
instance has completed its work, the terminate state transition transfers it to
the terminated state. When an activity instance is in the terminated or the
skipped state, then it is closed.

While the state transition diagram shown in Figure 3.9 properly repre-
sents the states of most activity instances in business processes, in real-world
settings, activity instances are likely to expose a more complex behaviour.
Reasons for this complex behaviour include disabling and enabling activities,
suspending running activities, and skipping or undoing activities. The re-
spective state transition diagram is shown in Figure 3.10. It provides a more
detailed view on the states of activity instances.

3.4 Activity Models and Activity Instances 85

The state transition diagram representing the complex behaviour of ac-
tivity instances is a refinement of the state transition diagram representing
their simple behaviour. All state transitions possible in the simple diagram are
also possible in the complex state transition diagram. The activity instance is
initiated, and it enters the ready state before entering the running state. If it
turns out that an activity instance that is not started is not required then it
enters the skipped state.

Fig. 3.10. State transition diagram for activity instances, detailed version

But the detailed state transition diagram shown in Figure 3.10 allows
more complex behaviour of activity instances. When an activity instance can
be activated, it enters the ready state. If during the execution of a process
instance certain activity instances are currently not available for execution,
they can be disabled. Activity instances that are in the init, disabled, or ready
state are also in the not started state. Once an activity instance is ready, it can
be started, entering the running state. Running activities can be temporarily
suspended, to be resumed later. An activity instance can terminate either
successfully or in failure. Terminated activity instances can be undone, using
compensation or transactional recovery techniques.

Based on the description of the behaviour of an activity instance, the
question now arises on how to capture the actual behaviour of a concrete
activity instance, that is, on how to specify the trace of states and state
transitions that the activity instance went through. In this section, events and
event orderings are introduced to properly represent the essence of activity
instances.

The basic idea of using events for representing activity instances is quite
simple: each state transition of an activity instance is represented by an event.
These events have a temporal ordering. Based on the state transition diagram

86 3 Business Process Modelling Foundation

for activity instances, each activity instance can be represented by a totally
ordered set of events. For the representation of activity instances by events,
the simple state transition diagram shown in Figure 3.9 suffices.

Definition 3.2 Let AM be a set of activity models and AI be a set of activity
instances. An activity instance i = (Ei, <i) ∈ AI based on an activity model
I ∈ AM is defined by a totally ordered set of events Ei such that either

• activity instance i is executed, in which case Ei ⊆ {ii, ei, bi, ti}, referencing
the occurrence of state transitions initialize, enable, begin, and terminate,
respectively, and an event ordering <i⊆ {(ii, ei), (ei, bi), (bi, ti)}, or

• activity instance i is skipped, in which case Ei ⊆ {ii, ei, si}, referencing
the occurrence of state transitions initialize, enable, and skip, and an event
ordering <i⊆ {(ii, si), (ii, ei), (ei, si)}.

The function model : AI �→ AM maps each activity instance to its activity
model, that is, model(i) = I. �

We define the event set of an activity instance as a subset of the complete event
set, Ei ⊆ {ii, ei, bi, ti}, since during the execution of an activity instance the
events occur one after the other. Therefore, any prefix of the totally ordered
event set characterizes a valid state of an activity instance.

If, for instance, an activity instance i has entered the running state,
it is characterized by i = (Ei, <i) such that Ei = {ii, ei, bi} and <i=
{(ii, ei), (ei, bi)}. In this case, Ei ⊆ {ii, ei, bi, ti} and <i⊆ {(ii, ei), (ei, bi), (bi,
ti)}, satisfying the definition.

Note that an activity instance can be skipped if it is in the init or ready
state. As a result, the enable event might or might not be in the event set of
a skipped activity instance.

The causal ordering of events indicated by this definition can be graphically
represented by event diagrams. In event diagrams, time proceeds from left to
right, and events are shown as bullets. The causal relationships of events are
represented by directed arcs.

Due to the nature of event diagrams, they form directed acyclic graphs,
where the nodes are events and the edges reflect causal ordering between
events. An event diagram for a particular activity instance is shown in Fig-
ure 3.11.

In the event diagram shown in part (a) of that figure, an activity instance
that is properly executed is shown, while (b) shows the events of a skipped ac-
tivity instance. To illustrate the relationship between state transition diagrams
and event diagrams, each state transition in the state transition diagram is
associated with an event in the respective event diagram.

The activity instance starts with a state transition to the init state. This
state transition is represented by an initialize event in the event diagram. An
enable state transition brings the activity instance in the ready state; this
state transition is represented by an enable event. An activity instance in the

3.5 Process Models and Process Instances 87

Fig. 3.11. Event diagram for (a) executed activity instance and (b) skipped activity
instance

ready state can be started, represented by the begin state transition. Finally,
the terminate state transition completes the activity instance.

Events are points in time, that is, events do not take time. The time
interval in which an activity instance is in one state is delimited by two events,
the event representing the state transition to enter the state and the event
representing the state transition to leave the state. For example, the time
interval in which the activity instance is in the running state is delimited by
the begin and terminate events.

The ordering of events of multiple activity instances in the context of a
business process instance is an important instrument to capturing the execu-
tion semantics of business processes, as will be discussed in Chapter 4.

3.5 Process Models and Process Instances

Business processes consist of a set of related activities whose coordinated exe-
cution contributes to the realization of a business function in a technical and
organizational environment. Business processes are represented by business
process models. Since this section concentrates on the execution ordering of
activities, disregarding the technical and organizational environment of busi-
ness processes, the term process model is used.

Figure 3.12 shows the layers of the Meta Object Facility for the process
subdomain. In the M0 layer there are process instances that reflect the actual
occurrences of a business process. Each process instance is an instance of a

88 3 Business Process Modelling Foundation

Fig. 3.12. MOF levels of process aspect

process model in the model layer M1. Process models are described by process
metamodels, building the M2 layer.

In order to express process models, there needs to be a notation in place
that provides notational elements for the conceptual elements of process meta-
models. For instance, if the process metamodel has a concept called activity
model, then there needs to be a notational element for expressing activity
models.

Therefore, in Figure 3.12, a process notation is associated with the pro-
cess metamodel level and with the process model level; each process model is
expressed in a process notation associated with the process metamodel that
describes the process model.

3.5.1 Process Models

In this section, a simple process metamodel is introduced. Rather than being
on completeness of modelling constructs, the focus of this section is on pro-
viding a well-described process metamodel that can be used to illustrate the
core components of any process metamodel. Chapter 4 will look at process
metamodels of higher complexity.

Any modelling effort starts with identifying the main concepts that need to
be represented. In metamodelling, the concepts to be represented are models.
The following models are identified as concepts in the metamodel.

• Process Model : A process model represents a blue print for a set of pro-
cess instances with a similar structure. Process models have a two-level
hierarchy, so that each process model consists of a set of activity mod-
els. Nesting of process models within process models is not represented,
because it would introduce complexity that is not required. Each process
model consists of nodes and directed edges.

3.5 Process Models and Process Instances 89

• Edge: Directed edges are used to express the relationships between nodes
in a process model.

• Node: A node in a process model can represent an activity model, an event
model, or a gateway model.
– Activity Models: Activity models describe units of work conducted in a

business process. Each activity model can appear at most once in a pro-
cess model. No activity model can appear in multiple process models.
This stipulation can be relaxed by qualifying activity model identifiers
with process model identifiers; to keep the process metamodel simple,
this extension is not covered. Activity model nodes do not act as split
or join nodes, that is, each activity model has exactly one incoming
edge and exactly one outgoing edge.

– Event Models: Event models capture the occurrence of states relevant
for a business process. Process instances start and end with events, so
process models start and end with event models.

– Gateway Models: Gateways are used to express control flow constructs,
including sequences, as well as split and join nodes.

Each process model contains elements at the model level, for instance, activity
models. Process instances consist of activity instances. The model level and
the instance level do not hold only for activities, but also for events and
gateways. For instance, the start event model in a process model rules that
each process instance begins with a start event instance. Since events are by
definition singular entities, event instances are also called events.

Control flow in process models is represented by gateway models. As with
activities and events, gateways are represented in process models by gateway
models. This explicit representation allows our considering gateway instances
for process instances. This is very useful, since each gateway model can be
used multiple times in a given process instance, for instance, if it is part of a
loop.

The different occurrences of a given gateway can have different properties.
For instance, an exclusive or gateway can in one instance select branch 1 while
in the next iteration it can use branch 2. This situation can be represented
properly if there are multiple gateway instances for a given gateway model
in the context of a given process model. In the example discussed, the first
gateway instance would select branch 1, while the second gateway instance
would select branch 2.

The next step in modelling concerns the identification and formalization of
the relationships between these concepts. Figure 3.13 provides a representation
of the concepts and their relationships by a structure diagram, defining a
process metamodel.

Each process model consists of nodes and edges. The nodes represent ac-
tivity models, event models and gateway models, while the edges represent
control flow between nodes. Each edge is associated with exactly two nodes,
relating them in a particular order.

90 3 Business Process Modelling Foundation

Fig. 3.13. Model for process models: process metamodel, MOF level M2

Each node is associated with at least one edge. The different types of nodes
are represented by the generalization relation. Activity models reflect the work
units to be performed, event models represent the occurrence of states relevant
for the business process, and gateway models represent execution constraints
of activities, such as split and join nodes.

While the association between nodes and edges are defined at the node
level, the cardinality of the association between special types of nodes (activity
models, event models, and gateway models) differs. Each activity model has
exactly one incoming and one outgoing edge.

Each process starts with exactly one event, the initial event, and ends
with exactly one event, the final event. Therefore, certain events can have
no incoming edges (initial event) or no outgoing edges (final event). Gateway
models represent control flow. Therefore, they can act as either split nodes
or join nodes, but not both. Hence, each gateway model can have multiple
outgoing edges (split gateway node) or multiple incoming edges (join gateway
node).

Figure 3.14 shows a process model based on the process metamodel in-
troduced. The notation used to express this process model is taken from the
Business Process Model and Notation:

• Event model nodes are represented by circles; the final event model is
represented by a bold circle.

• Activity models are represented by rectangles with rounded edges.
• Gateway models are represented by diamonds.
• Edges are represented by directed edges between nodes.

3.5 Process Models and Process Instances 91

Fig. 3.14. Process notation used to express concepts from process meta model

To ease discussion of this example, nodes are marked with identifiers. The
process model represents the checking of an order. The process starts with
an initial event model node N1, represented by a circle. This event model
represents the occurrence of a state relevant for the business process.

In the example, an order has been received, which now needs to be checked.
Once this event occurs, the order needs to be analyzed, represented by activity
model AnalyzeOrder and the edge connecting event node N1 to AnalyzeOrder.
After the order is analyzed, a gateway node is used to decide whether a simple
or an advanced check is required. When the chosen checking activity is com-
pleted, the gateway model N6 is activated and the process completes with the
final event model N7.

Before the process instance level is addressed, a formalization of the process
metamodel shown in Figure 3.13 is introduced.

Definition 3.3 Let C be a set of control flow constructs. P = (N,E, type) is
a process model if it consists of a set N of nodes, and a set E of edges.

• N = NA ∪NE ∪NG, where NA is a set of activity models, NE is a set of
event models, and NG is a set of gateway models. These sets are mutually
disjoint.

• E is a set of directed edges between nodes, such that E ⊆ N ×N , repre-
senting control flow.

• type : NG �→ C assigns to each gateway model a control flow construct.

�

Figure 3.15 shows in part (a) a process model with an explicit representation
of a sequence gateway. The set of control flow constructs includes sequential
execution, that is, Seq ∈ C. The process model is defined by P = (N,E, type),
such that

92 3 Business Process Modelling Foundation

Fig. 3.15. Alternative representations of sequence gateway

NA = {A,B}
NE = {N1, N2}
NG = {G}
E = {(N1, A), (A,G), (G,B), (B,N2)}

type(G) = Seq ∈ C

Whenever there is a direct control flow edge connecting two activity models
in a process model, the gateway node G with type(G) = Seq representing the
sequence flow can be omitted, as shown in part (b) of that figure. This stipula-
tion simplifies process model representations without introducing ambiguity.

3.5.2 Process Instances

Process models define restrictions on process instances that belong to the
process model. Therefore, it is essential to properly define not only process
models but also process instances. Modelling process instances is not an easy
task, because of their intangible nature. A process instance is started, and it
lives for a limited time period before it ceases to exist, similarly to activity
instances.

A process instance consists of a number of activity instances as well as
event and gateway instances. The ordering relationships of activity instances
in a process instance is defined by the relationships of the activity models in
the process model.

For instance, if a process model defines an execution ordering constraint
between activity models A and B, then for each particular process instance,
the activity instance that belongs to activity model A must have terminated
before the activity instance for B can be started.

An extension of the process metamodel discussed above is presented in Fig-
ure 3.16. There are additional classes for process instances and node instances

3.5 Process Models and Process Instances 93

Fig. 3.16. Model for process models and process instances

that are a generalization of activity instances, events, and gateway instances.
There are one-to-many relationships between the respective concepts at the
model level and at the instance level, as shown in the metamodel.

Each process instance is associated with exactly one process model, and
each process model is associated with an arbitrary number of process in-
stances. Each process instance is composed of an arbitrary number of activity
instances. Each activity instance is associated with exactly one activity model.
The same holds for events and gateways.

Note that each activity model is associated with an arbitrary number of
activity instances. In the case of loops, an activity model is associated with
multiple activity instances. An activity model that lies on a branch that is
not taken during a particular process instance is not associated with any
activity instance, explaining the cardinality of the association * that allows
zero occurrences of the association, that is, there might be activity models in
a process model for which no activity instances are required for a particular
process instance.

After introducing events and event orderings to represent activity in-
stances, this section looks at events and event orderings that occur during
the enactment of process instances. Process models restrict for a process in-

94 3 Business Process Modelling Foundation

stance the events and event orderings of its activity instances by imposing
execution constraints, such as sequential execution of activity instances. Ex-
ecution constraints need to be satisfied by all process instances based on a
particular process model.

The execution constraints can be precisely specified by events and their
ordering. For example, the execution constraint A → B dictates that the start
event of the activity instance corresponding to B can only happen after the
termination event of the activity instance corresponding to A. This is the
basic idea of characterizing the execution semantics of process instances.

To illustrate these concepts, a process instance based on the process model
shown in Figure 3.14 on page 91 is investigated. Each process instance based
on this process model starts with an analyze order activity. Depending on
a decision, either the simple check activity or the advanced check activity
is enacted. This process model makes room for different process instances.
Depending on the decision made at the gateway node, either the simple check
activity instance or the advanced check activity is executed.

Fig. 3.17. Event diagram of sample process instance (subscripts of init, enable,
terminate and skip events omitted)

Event diagrams are also useful for capturing process instances. The event
diagram of a particular process instance is shown in Figure 3.17, where a
process instance is shown during which the simple check activity instance is
selected.

When the process starts, activity instances for all three activity models
are generated. In event diagrams, the subscripts of the init, enable, terminate,
and skip events can be omitted, if the activity instance to which the event
belongs is clear.

The start event is represented by the event node N1 in the process model.
The occurrence of this event is represented in the event diagram by event n1.
Once this event has occurred, the AnalyzeOrder activity instance can start,
that is, it can enter the ready state, represented by an enable event.

3.5 Process Models and Process Instances 95

When the AnalyzeOrder activity instance terminates, (1) the AdvCheck
activity instance is no longer required, so that a skip event occurs for this
activity instance, and (2) the SimpleCheck activity instance is enabled, so
that it can start. When this activity completes, the final event n7 of the
process instance occurs.

Observe that the event diagram shown in Figure 3.17 does not represent
the initial or final event of the process or the events related to gateway in-
stances. A complete picture of the events that occur is shown in Figure 3.18.

Fig. 3.18. Event diagram of sample process instance, with initial and final events
and gateway events

Definition 3.4 Let PI be a set of process instances. A process instance i =
(Ei, <i) ∈ PI based on a process model P = (N,E, type) is defined by a
partially ordered set of events Ei such that

• Ei consists of events for all activity instances j ∈ AI for which model(j) ∈
N

• <i is an event ordering in Ei that satisfies the ordering of events in each
activity instance and in each gateway instance, and the ordering of events
between activities satisfies the execution constraints as defined by the pro-
cess model.

�

Note that different types of nodes can create different types of events. Nodes
that represent activity models and nodes that represent gateway models can
create events for initializing, enabling, beginning, terminating and skipping
the respective instance, while nodes that represent events can just occur.
This means an event in a process model can occur during the enactment of a
process instance based on the model. The event can potentially occur multiple
times, if, for instance, the event is part of loop in the process model.

If process instances are discussed that feature multiple activity models,
the detailed presentation of event diagrams becomes cumbersome and hard
to follow. Therefore, an abstraction is introduced that reduces the events of
an activity instance by a line that is delimited by its enable and terminate
or skip events. Activity instances that are skipped are represented by a dot-
ted line; activity instances that are executed are represented by a solid line.

96 3 Business Process Modelling Foundation

The abstraction from the event diagram shown in Figure 3.18 is shown in
Figure 3.19.

Fig. 3.19. Compact representation of event diagrams

3.6 Process Interactions

Business processes reside in single organizations. Since enterprises cooperate
with each other, it is essential to consider the interaction between enterprises.
Since all activities that an enterprise conducts are part of some business pro-
cess, the interaction between enterprises can be described by the interaction
of business processes of these enterprises. These interactions typically occur
in a peer-to-peer style, following an agreed-upon process choreography.

An example of interacting processes is shown in Figure 3.20. A buyer orders
some products from a reselling company. These enterprises are reflected by
the respective value chains. Within these value chains are business functions
realized by business processes.

The buyer value chain contains an order product business function, and
the reseller value chain contains an order management business function. The
business process models that realize these business functions are shown in
Figure 3.20.

The business process of the buyer starts by his placing an order. This
placing of an order is realized by a message to the reseller; the task place
order is responsible for sending this message. On the reseller side, this message
triggers a receive order event. The processes continue as specified. Since the
message flow occurs between multiple activities in both directions, the value
chain level representation of the interacting business processes—from buyer to
reseller—is not complete in the sense that it does not hold all possible orders
of interaction.

Interacting process instances can be visualized adequately by event dia-
grams. The distributed nature of interacting processes is represented by in-
troducing a horizontal line for each participant, on which the events of that
participant appear in an ordered fashion. Participants communicate by send-
ing and receiving messages. In event diagrams, a one-way message interaction

3.6 Process Interactions 97

Fig. 3.20. Interacting business processes involving buyer and reseller

is represented by a send event, a corresponding receive event, and an arc con-
necting the two events. Participants can communicate only by sending and
receiving messages.

In order to illustrate these concepts, Figure 3.21 shows the event diagram
of one particular process interaction based on the interacting process models
shown in Figure 3.20.

Fig. 3.21. Event diagram of interacting processes shown in Figure 3.20

The diagram shows the timelines of the buyer and the reseller. It abstracts
from events regarding the initiating, enabling, starting, and terminating of

98 3 Business Process Modelling Foundation

activities. Instead, it concentrates on message events. Each message send event
is marked by the activity instance during which the send occurs, and each
receive event is marked by the activity instance during which the receive
occurs. It is valid to assume that messages are sent on termination of the
respective activity instance and an arrival of a message triggers the enable
event for the receiving activity instance.

Interacting processes are formalized as process choreographies, which will
be discussed in detail in Chapter 5, where also properties of process chore-
ographies are investigated.

3.7 Modelling Process Data

Business processes operate on data. Explicitly representing data, data types,
and data dependencies between activities of a business process puts a business
process management system in a position to control the transfer of relevant
data as generated and processed during processes enactment.

3.7.1 Modelling Data

Fig. 3.22. MOF levels of modelling data

Data modelling is at the core of database design. The Entity Relationship
approach is used to classify and organize data in a given application domain.
Entity Relationship modelling belongs to the metamodel level, as depicted in
Figure 3.22, because it provides the required concepts to express data models.
Data modelling will be illustrated by a sample application domain, namely by
order management.

In a modelling effort, the most important entities are identified and clas-
sified. Entities are identifiable things or concepts in the real world that are

3.7 Modelling Process Data 99

important to the modelling goal. In the sample scenario, orders, customers,
and products are among the entities of the real world that need to be repre-
sented in the data model.

Entities are classified as entity types if they have the same or similar
properties. Therefore, orders are classified by an entity type called Orders.
Since each order has an order number, a date, a quantity, and an amount, all
order entities can be represented by this entity type. Properties of entities are
represented by attributes of the respective entity types.

The entities classified in an entity type need to have similar, but not iden-
tical structure, because attributes can be optional. If the application domain
allows, for instance, for an order to have or not to have a discount, then the
amount attribute is optional. This means that two orders are classified in
entity type order even if one has a discount attribute while another does not.

Entity types in the Entity Relationship metamodel need to be represented
in a notation by a particular symbol. While there are variants of Entity Re-
lationship notations, entity types are often represented by rectangles, marked
with the name of the entity type. Figure 3.23 shows an entity type Orders at
the centre of the diagram. Other entity types in the sample application do-
main are customers and products. The attributes are represented as ellipsoids
attached to entity types.

Fig. 3.23. Entity relationship diagram involving customers, orders, and products,
O’Neil and O’Neil (2000)

Entities are associated with each other by relationships. For instance, a
customer “Miller” requests an order with the order number 42. These types of
links between entities are called relationships. Just as there are many customer
entities and many order entities, there are many customer-order relationships.
To represent these relationships, a relationship type requests classifies them
all. In Entity Relationship diagrams, relationship types are typically repre-
sented by diamond symbols, connected to the respective entity types by edges.

The complex nature of data in a given application domain can be well
represented by Entity Relationship Diagrams. These diagrams can be used to

100 3 Business Process Modelling Foundation

create relational database tables, using transformation rules. Once the respec-
tive database tables have been created in a relational database, application
data can be stored persistently. The data can be retrieved efficiently using
declarative query languages, for instance Structured Query Language.

While this discussion focuses on data modelling in the context of database
applications, the same data modelling method can be used to represent data
structures in business process management. Based on these data structures,
data dependencies between activities in business processes can be captured
precisely.

Data modelling is also the basis for the integration of heterogeneous data.
In the enterprise application integration scenarios discussed above, one of the
main issues was the integration of data from heterogeneous data sources. Once
data models are available for these data sources, the data integration problem
can be addressed. There are advanced data integration techniques that also
take into account data at the instance level, but explicit data models in general
are essential to addressing data integration.

Data integration can then be realized by a mapping between the data
types. For instance, there might be applications on top of database systems A
and B, such that these systems have tables CustomerA and CustomerB, respec-
tively, that differ. For instance, while CName is the attribute of the CustomerA
table, referring to the name of the customer, CustN might be the respective
attribute in the CustomerB table. In order to integrate both tables, the at-
tributes need to be mapped. In this case, CustomerA.CName is mapped to
CustomerB.CustN.

In data integration projects, complex integration problems are likely to
emerge. There might be attributes that cannot be mapped, but there might
also be attributes that need to be mapped to different tables, often by our
using transformation rules. The hardest set of problems, however, stem from
semantic heterogeneity. There are assumptions on the data that are not ex-
plicit in the data model or in the actual data stored in the database. These
semantic differences can only be taken into account when investigating the
meaning of the attributes in detail, often during interviews with the persons
involved in the data modelling and database design of the systems to integrate.

Semantic specification of data can be used to solve these data integration
problems. However, complete semantic specification of data requires consider-
able resources, and the completeness of the semantic specification cannot be
proven automatically. Therefore, further research is required to evaluate the
possibilities of semantics-based data integration.

In graph-based approaches to business process modelling, data dependen-
cies are represented by data flow between activities. Each process activity is
assigned a set of input and a set of output parameters. Upon its start, an
activity reads its input parameters, and upon its termination it writes data it
generated to its output parameters. These parameters can be used by follow-
up activities in the business process.

3.7 Modelling Process Data 101

The transfer of data between activities is known as data flow. By provid-
ing graphical constructs to represent data flow between activities, the data
perspective can be visualized and used to validate and optimize business pro-
cesses. These aspects are covered in more detail in Section 4.6, which intro-
duces graph-based process languages.

3.7.2 Workflow Data Patterns

To organize data-related issues in business process management, workflow
data patterns have been introduced. Workflow data patterns formulate char-
acteristics on how to handle data in business processes. They are organized
according to the dimensions data visibility, data interaction, data transfer,
and data-based routing.

Data visibility is very similar to the concept of scope in programming
languages because it characterizes the area in which a certain data object is
available for access. The most important workflow data patterns regarding
data visibility are as follows.

• Task data: The data object is local to a particular activity; it is not visible
to other activities of the same process or to other processes.

• Block data: The data object is visible to all activities of a given subprocess.
• Workflow data: The data object is visible to all activities of a given busi-

ness process, but access is restricted by the business process management
system, as defined in the business process model.

• Environment data: The data object is part of the business process execu-
tion environment; it can be accessed by process activities during process
enactment.

Data interaction patterns describe how data objects can be passed between
activities and processes. Data objects can be communicated between activities
of the same business process, between activities and subprocesses of the same
business process, and also between activities of different business processes.
Data can also be communicated between the business process and the business
process management system.

Data transfer is the next dimension to consider. Data transfer can be
performed by passing values of data objects and by passing references to data
objects. These data transfer patterns are very similar to call-by-value and call-
by-reference, concepts used in programming languages to invoke procedures
and functions.

In data-based routing, data can have different implications on process
enactment. In the simplest case, the presence of a data object can enable
a process activity. Data objects can also be used to evaluate conditions in
business process models, for instance, to decide on the particular branch to
take in a split node.

Workflow data patterns are an appropriate means to organize aspects of
business processes related to the handling of data.

102 3 Business Process Modelling Foundation

3.8 Modelling Organization

An important task of a business process management system is the coordina-
tion of work among the personnel of an enterprise. To fulfill this, the system
has to be provided with information on the organizational structures in which
the business process will execute.

Fig. 3.24. MOF levels of organization aspect

The levels of abstraction in organization modelling are shown in Fig-
ure 3.24. As in process modelling and data modelling, the metamodel level
provides the means to express models, in this case organizational models.
Concepts at this level are positions, roles, teams, and relationships between
positions like supervisor. In organization modelling, there are a few formal
rules on how to express organizational structures, as well as notations to ex-
press them.

The general principle behind organization modelling is the resource, an en-
tity that can perform work for the enterprise. The general concept of resource
subsumes humans and other resources, such as trucks, warehouses, and other
equipment a company requires to fulfill its goals.

Persons are part of an organization, typically a business organization. The
persons in these organizations work to fulfill the business goals of the en-
terprise. Each person typically occupies some position, and the duties and
privileges of that person come with the position, not with the person. This
allows filling positions according to an overall organizational plan. In addition,
the company can cope better with changes in personnel. Organizational units
are permanent groupings of persons based on their positions. Organizational
teams or project teams are specific organizational units without a permanent
nature. They are conceptualized in the object model shown in Figure 3.25.

3.8 Modelling Organization 103

Fig. 3.25. Organization metamodel

Figure 3.26 shows an organizational chart of a fictive enterprise. In or-
der for us to not overload that figure, it contains positions only at the top
levels, the chief executive level and the department level. Departments are
organizational units with a set of member positions.

Fig. 3.26. Sample organizational chart

The link between the organizational structure of an enterprise and the
business processes is accomplished by work items. Work items represent activ-
ity instances to be performed, and work items are associated with knowledge
workers to facilitate their selection by knowledge workers. In particular, when

104 3 Business Process Modelling Foundation

the business process management system determines that a certain activity
instance enters the ready state, a work item is offered to a set of knowledge
workers.

Each work item is associated with exactly one activity instance. The selec-
tion of the process participants is subject to resource allocation mechanisms,
which will be discussed below. When a knowledge worker completes the ac-
tivity instance, the business process management system is informed, so that
the process instance can be continued accordingly.

In order to discuss the resource allocation principles, a state transition
diagram of work items is considered, and a relationship of activity instances
to the respective state transitions is provided. The state transition diagram
of work items is shown in Figure 3.27.

Fig. 3.27. State transition diagram of work items, representing activity instances
in human interaction workflows

The assignment of process participants to activities in a business process
can be classified by resource patterns. A rich set of resource patterns have
recently been introduced; in this book, the most relevant resource patterns
are discussed.

Direct Allocation

In direct allocation, an individual person, rather than a position in an organi-
zation, is allocated to all activity instances of a particular activity model. This
resource allocation is useful in cases where there is exactly one person who is
suitable for performing these activities, such as the chairperson of a company,
who has to finally decide on investments exceeding a certain threshold.

Direct allocation can always be simulated by role-based allocation, dis-
cussed next, simply by providing a role with one member, in our example
the company owner. However, if this property of the organization will remain

3.8 Modelling Organization 105

stable over a long period of time, introducing a separate role (owner) is not
required, so direct allocation can be used. The limitations of direct allocation
will be discussed in the context of role-based allocation.

Role-Based Allocation

Role-based allocation is the standard way of allocating work to the members of
organizations. It is based on the understanding that all members of a certain
role are somehow functionally equivalent, so that any member of the role can
perform a given unit of work.

To each activity model in a business process model, a role is assigned,
indicating that all members of the role are capable of performing the respec-
tive activity instances. The mapping of role information to specific knowledge
workers is called role resolution. Current information on the availability of the
knowledge worker is used during role resolution.

There are two ways of realizing role-based allocation. In the first way, when
an activity instance enters the ready state, the work item is communicated
to the members of the group. Once one member of the group selects a work
item, the work items associated with the other group members are deleted. In
the second way, only one person is selected to perform the activity instance,
so only one work item is created.

Role-based allocation provides a set of interesting advantages with respect
to direct allocation, all of which are related to enhancing the flexibility of
business processes. Firstly, the business process model does not need to be
changed when there are changes in the personnel, that is, employees retire
and new employees are hired. When using direct allocation, any change in the
personnel related to the directly allocated persons would result in a change in
the business process model.

Secondly, by role resolution at run time of the business process, only avail-
able persons are selected to perform activities. This approach avoids situations
in which persons are selected to perform activity instances that are currently
not available, for instance, due to meetings or absence. In direct role reso-
lution, when the person is not available, there is no way of continuing the
business process.

Deferred Allocation

In deferred allocation, the decision about who performs an activity instance
is only made at run time of the business process. To this end, there is no
distinction between deferred allocation and role-based allocation. However,
in deferred allocation, rather than using the role information defined during
design time, the allocation is performed as an explicit step in the business
process, and not influenced by role information.

106 3 Business Process Modelling Foundation

Authorization

Authorization allocates persons to activity instances based on their positions.
So, a list of positions is enumerated that specifies the persons who can per-
form the activity instance. This could also be achieved by adding a new role
that captures the authorization. A specific type of authorization that uses
capabilities of the knowledge worker to perform allocation is also possible.

Separation of Duties

The separation of duties allocation scheme relates different allocations within
one business process. For instance, a document needs to be signed and coun-
tersigned by two employees with a common role. In role-based allocation, these
activities could be performed by the same employee. Separation of duties al-
lows relating allocations in a way that this is ruled out, so that each document
is signed by two different employees.

Case Handling

In the case handling allocation scheme, certain activities in a business process
require an understanding of the overall case. In these environments, it is use-
ful that the same knowledge worker deals with all activities of one business
process instance. This avoids errors and reduces processing time, because the
knowledge worker already knows the case, and so can solve the issues at hand
more efficiently than a colleague to whom the case is not known. This is a key
concept in case handling, which is discussed in more detail in Section 7.5. The
“retain familiar” allocation scheme is very similar to case handling; however,
not all activity instances of a case are allocated to one specific knowledge
worker, but rather only a subset of them.

History-Based Allocation

The idea of history-based allocation is that a person is allocated to an activity
instance based on what this person worked on previously, that is, on the
history of the activity instance that he or she completed. This includes other
business process instances. The goal is to allocate work to persons according
to their personal experiences and expertise that is not represented in the role
information. While this is not part of a role specification, this information
needs to be represented in the business process management system so that
it can decide on the allocation based on the history and personal experiences.
This allocation scheme is useful for realizing a “one face to the customer”
strategy, in which for each customer there is a dedicated individual responsible
for all aspects of communication with it.

3.9 Modelling Operation 107

Organizational Allocation

If organizational allocation is used, not roles but the positions within the
overall organization are used to allocate activity instances. For instance, to
authorize expenditure, the manager of the organizational unit that requested
the expenditure needs to approve. Depending on the particular language used
to express organizational allocation, complex allocation rules can be realized,
all of which take advantage of the organizational structure of the company.

3.9 Modelling Operation

While business process management organizes the work that a company per-
forms by focusing on organizational and functional aspects, the realization
of business process activities also needs to be taken into account. Activities
can be distinguished depending on the level of software system support. The
terms system workflows and human interaction workflows were introduced to
characterize the different kinds of business process enactment.

A classification of activities in business processes was introduced in Fig-
ure 3.1, consisting of system activities, user interaction activities, and manual
activities. To recapitulate, system activities are performed by software systems
without user interaction, user interaction activities require the involvement of
human users and manual activities do not involve the use of information sys-
tems.

During the enactment of human interaction workflows, knowledge work-
ers perform activity instances. When a knowledge worker starts working on a
specific activity, the respective application program is started, and the input
data as specified in the process model is transferred to that application pro-
gram. When the knowledge worker completes that activity, the output data
generated is collected in the output parameters. These parameter values can
then be stored in the application program. They can also be transferred by
the business process management system to the next activity, as specified in
the business process model.

Business process modelling aims at mapping high-level and domain-specific
features of the application process; the technical details—the main compo-
nents of the operational perspective—are taken into account in the configura-
tion phase of the business process management lifecycle. The heterogeneous
nature of information technology landscapes led to various kinds of interface
definitions, most of which did not prove to be compatible. With the advent of
service-oriented computing, the operational aspects of business processes are
represented by services, providing the required uniformity.

This section discusses how activities realized by software functionality can
be modelled. Conceptually, the same levels of abstraction apply to modelling
the operational perspective as to modelling the other perspectives: at the
metamodel level, interface definition languages reside. They describe specific

108 3 Business Process Modelling Foundation

interface definitions at the model level. At the instance level executing software
code is categorized.

This approach fits the modelling of activity instances (and, therefore, also
to process instances) well, because activity instances can be realized by exe-
cuting software code. It also fits the organizational perspective in which per-
sons reside at the instance level. Persons are—at least in human interaction
workflows—responsible for performing activity instances.

In order to automatically invoke this software functionality, business pro-
cess management systems require concepts and technology to access these
systems. The operational perspective of business process modelling provides
the information that equips a business process management system with in-
formation required to invoke the functionality of external application systems.

The operational perspective includes the invocation environment of ap-
plication programs, the definition of the input and output parameters of the
application program, and their mapping to input and output parameters of
business process activities. Therefore, functional requirements need to be de-
tailed in order for us to evaluate whether a certain software system provides
the required functionality in the context of a business process.

This perspective is not limited to functional requirements. Non-functional
requirements also need to be represented, for instance, security properties
and quality of service properties of the invoked applications or services, such
as execution time and uptime constraints. In service-oriented architectures,
these properties are typically specified in service-level agreements between
collaborating business partners. These service-level agreements are part of a
legal contract that the parties sign.

Fig. 3.28. MOF levels of operational perspective

Interface definition languages are used to specify the usage of procedures
and functions, implemented by software system. They are also essential to

3.9 Modelling Operation 109

connect software systems that have been developed independently from each
other. Therefore, they are essential for middleware systems. Middleware based
on service-oriented architectures play an increasingly important part as real-
ization platforms for enacting business processes. The remainder of this sec-
tion discusses aspects of service-oriented architectures that are relevant for
business process management.

The creation of service wrappers that encapsulate business-relevant func-
tionality of existing information systems is called service-enabling. While there
are environments in which one service is realized by one information system,
the typical case is where business functionality is realized by the interplay of
multiple existing application systems, making service-enabling a costly and
complex matter.

Fig. 3.29. Service-enabling closes gap between technical infrastructure and business
processes

Service-enabling closes the gap between business process activities and
the technical infrastructure for realizing them. This situation is depicted in
Figure 3.29, where the business process activity AnalyzeOrder is realized by a
service called Analyze Order Service which combines the functionality of three
underlying software systems that run on a technical infrastructure. While
the definition and realization of the Analyze Order Service is a complex and
challenging task, this book assumes that dedicated business functionality is
available and can be used to realize activities in business processes.

110 3 Business Process Modelling Foundation

Service-oriented computing also facilitates the dynamic binding of services
to particular business process activities. This situation is represented in the
conceptual model of these layers by a many-to-many relationship between
activity and service. This means that a given activity can be realized by mul-
tiple services. Advanced concepts in service engineering facilitate the dynamic
binding of a business process activity to a service at run time, providing the
potential to increase fault tolerance by selecting from a set of possible services
a service that is currently operational.

Fig. 3.30. Detailed view on service-enabling, with atomic services and composed
services

A more detailed picture is provided in Figure 3.30, where enterprise appli-
cation integration middleware is explicitly shown. Two legacy systems provide
their functionality via enterprise application integration middleware. For each
of these systems, an adapter is realized that hides the heterogeneity of the
legacy systems from higher levels. But there can also be existing software

3.10 Business Process Flexibility 111

systems that do not require the enterprise application integration middleware
layer.

In the example shown in Figure 3.30, the software component Order 324
does not require the enterprise application integration middleware. This is the
case if the system exposes an interface with a suitable and well-documented
interface, such as a Web services interface.

Different types of services are also shown in Figure 3.30: Atomic services
provided by individual legacy systems via service-enabling or via enterprise
application integration middleware subsystems and composed services, which
are built on top of atomic services.

These composed services provide a high-level abstraction layer to be used
in the business process layer. In particular, the AnalyzeOrder business pro-
cess activity is realized by the Analyze Order Service, a composed service
that uses atomic services provided either by enterprise application integration
middleware or by a service-enabled software system.

As the current realization of service-oriented architectures, Web services
are discussed in Chapter 7, including service composition, which is the tech-
nique to define and enact system workflows in service-oriented environments.

3.10 Business Process Flexibility

The quest for flexibility can be regarded as the main driving force behind
business process management, both at an organizational level, where strate-
gic business processes are investigated, and at an operational level, where
human interaction workflows and system workflows are important concepts
for realizing business processes.

According to Wikipedia, flexibility refers to the “ability to easily bend an
object or the ability to adapt to different circumstances.”

In today’s dynamic market environments, “different circumstances” are
induced by changes in the market environment of the company. Business pro-
cesses are objects that need to adapt easily to changes. Since products that
companies provide to the market are generated by business processes, flexible
business processes are an important asset for coping with market changes in
an effective manner.

Different aspects have to be taken into account when considering flexibil-
ity. First of all, flexibility is provided by explicit representation of business
processes, because adaptations of explicit, graphically specified business pro-
cesses is much easier than adaptation of written organizational procedures or
business policies buried in software code. Flexibility through explicit process
representation will be discussed in Section 3.10.

Enactment platforms, such as workflow management systems, provide
powerful mechanisms for enacting business processes in diverse technical and
organizational environments. One area specific to human interaction work-

112 3 Business Process Modelling Foundation

flows is the assignment of knowledge workers to process activities. These or-
ganizational aspects will be discussed in more detail in Section 3.10.

In typical workflow environments, such as system workflows and human
interaction workflows, information systems are required for enacting workflow
activities. The interfaces to these systems might be hardcoded in the adapters
of the workflow management system. In dynamic software landscapes, where
functionality is provided through standardized interfaces, the ability to change
the binding of particular software to workflow activities is another source of
flexibility. Flexibility at the operational level where interfacing to information
systems is addressed is considered in Section 3.10.

Explicit Process Representations

Business process management systems are created to narrow the gap between
business goals and their realization by means of information technology. The
main way to provide this flexibility is based on explicit representations of
business processes at different levels. While organizational business processes
have a coarse-grained structure and are typically specified textually by forms,
operational business processes consist of process activities, and execution con-
straints that relate them.

Graphical notations, such as the ones discussed in Chapters 4 and 5, are
well equipped to support communication about these operational business
processes between different stakeholders involved in the design and realization
of business processes.

Explicit process representations provide flexibility, since changes to the
current process can be discussed and agreed upon by the different stakeholders
involved in the design of the business process. In this context, flexibility is
achieved by changes at the business process model level that are immediately
translated to actual business process instances.

Fig. 3.31. Sample business process model

A simple ordering process is shown in Figure 3.31, illustrating the concepts
introduced. This process features a sequence of activities, where the first ac-
tivity to store the order is preceded by a start event. After the order is stored,
the inventory is checked. This version of the business process rules that the

3.10 Business Process Flexibility 113

shipment is prepared only after the invoice is sent and the funds are received.
Finally, the goods are shipped and the process terminates.

Due to the somewhat cautious policy realized by the business process—
prepare shipment only after receiving the funds—business process instances
based on this process model might suffer from long processing times, resulting
in insufficient customer satisfaction.

In order to solve this problem, the process owner starts a review of this
business process by inviting process participants and process consultants to
a joint workshop. The business process model is used as a communication
platform for these stakeholders at this workshop.

Discussing the problem of the process instances, the stakeholders find out
that concurrency can be exploited within the process. If activities can be
executed concurrently, their order of execution is irrelevant. For instance, the
preparation of the invoice can be started before the shipment is handled. The
new and improved version of the business process is shown in Figure 3.32.

Fig. 3.32. Sample business process model, improved version with concurrency

Although in this example the deficits of the business process are obvious,
the improvement of the process by introducing concurrency shows quite well
how an explicit process model can foster response to change.

The translation of the business process model to the actual operational
environment can be realized in different ways. If the business process is re-
alized by a human interaction workflow, then the modified business process
model needs to be deployed in the workflow management system. Deployment
typically includes enrichment of the business process model with information
to make the process executable.

In particular, there needs to be a translation from the graphical model to
an executable format that is specified in a particular workflow language or—
in case the system workflow is realized in a service-oriented environment—
in a service composition language. In any of these realizations, the explicit
representation of business process models provides the flexibility to change
the process and to finally enact the modified process.

114 3 Business Process Modelling Foundation

New process instances would then follow the new, improved business pro-
cess model. If, on the other hand, business processes are enacted without any
system support, then the business process model is translated manually to a
consistent set of procedures and policies that the knowledge workers need to
follow.

The flexibility resulting from the explicit modelling of business processes
is fundamental to business process management applications. In Section 7.2,
looking at flexible workflow management, advanced flexibility properties will
be discussed that allow us to change the structure of running workflow in-
stances, providing an even higher degree of flexibility.

Organizational Modelling

The modelling of organizational aspects also provides flexibility in business
process management. In this section, role resolution in an intra-company set-
ting is discussed, in which different approaches are investigated to associate
knowledge workers with business process activities. This section uses concepts
introduced in Section 3.8 in the context of resource patterns.

In the case of human interaction workflows, the enactment environment of
the business process has to take into account the organizational structure of
the company that runs the business process. Flexibility in organizational mod-
elling is achieved by assigning roles to process activities, and not to specific
individuals.

By associating roles with activity models at design time and mapping roles
to personnel that is skilled, competent, and available to perform the activity
at run time, flexibility is improved, because changes in the personnel structure
of the organization do not affect the business processes.

For instance, absent knowledge workers are not with associated with spe-
cific activity instances, as are persons who are currently available. Thereby, the
dynamic aspect in the organization—knowledge workers might be temporar-
ily absent or there might be changes in the work force—can be represented
at the model level. Consequently, changes in the personnel are hidden from
the process, as long as the roles defined in the model can actually be filled by
persons in the organization.

Fig. 3.33. Simple business process model with role information

3.10 Business Process Flexibility 115

Consider a business process with a set of activities that need to be executed
sequentially. An example of such a business process in a banking environment
is in shown in Figure 3.33. These activities involve entering a credit request
(Enter Credit Request), gathering information on the financial situation of
the client (Analyze client), proposing a decision on the credit request, and
reviewing and submitting the decision.

A subset of these activities is assigned the same role. In the example,
a clerk is responsible for the first three activities, whereas the clerk’s boss
finally decides and submits the decision. This situation can be represented in
a business process model by associating the role Clerk and the role Boss with
their respective activities.

For each process instance by role resolution, the system offers these ac-
tivities to knowledge workers who can fulfill the respective role. Figure 3.34
shows a situation in which three different knowledge workers with the role
Clerk are associated with the activity instances of that role.

Fig. 3.34. Simple business process instance with knowledge workers associated with
activities

While this role resolution is correct from a formal point of view, this situ-
ation is undesirable in most cases because each clerk needs to understand the
context of the case, which leads to longer process durations and potentially
incorrect decisions.

In the example, the hand-over of work from Peter to Charles and from
Charles to Anne leads to delays in process executions and should therefore
be avoided. In addition, Charles needs to get familiar with the case entered
by Peter, and Anne needs to get familiar with the case that Charles analyzed
beforehand.

This figure also shows that at the business process instance level, knowl-
edge workers are associated with activity instances, while at the business
process model level, roles are associated with activity models.

To provide adequate support through role resolution, the business process
model needs to contain the information that whoever conducted the first clerk

116 3 Business Process Modelling Foundation

Fig. 3.35. Simple business process instance with one knowledge worker associated
with clerk activities

activity also has to conduct the other two clerk activities. In this case, all
clerk activities are associated with Charles, who then can perform them much
quicker than the three persons in the previous setting. This beneficial role
resolution is shown in Figure 3.35. It is realized by the case handing resource
pattern, discussed in Section 3.8.

This advanced role resolution works well if the same knowledge worker
is available during the whole business process instance—or at least during
the steps that the person conducts. But there are cases where a person has
started on a process instance by conducting the first activity, but then becomes
unavailable.

In this case, a decision needs to be made: either the process is delayed
until the person returns to work or the case is transferred to another clerk.
This clerk needs to understand the overall context of the case before he can
start processing the activity. This decision is influenced by multiple factors,
such as the type of business process, the expected delay, and the effect of the
delay, and therefore cannot be performed automatically in general.

Selection of Business Partners in Process Choreographies

The modelling of organizational aspects in business process management
can be extended to business partners, which is important in the context of
business-to-business processes.

Consider a business process choreography with multiple business partners,
each of which plays a specific role in the choreography. If there is a role Shipper
specified according to the requirements for shipping goods, it can be bound to
specific enterprises that can perform the work. Additional flexibility is gained
because the organizations participating in a choreography are not hardwired,
but represented at the model level.

There are different options for selecting a particular shipper. The selection
can be done before a particular process instance starts. This alternative is

3.10 Business Process Flexibility 117

useful if sufficient information on the goods to be shipped is available before
the process starts.

In scenarios where only during run time of the process instance are the
goods and the sender and receiver determined, the dynamic selection of a
shipper is useful. Based on the information on the shipment and on its addi-
tional properties—such as dangerous goods—an appropriate shipper can be
selected at run time.

Fig. 3.36. Business partner selected at run time, using a broker

An example involving a customer, a broker, and a set of suppliers is shown
in Figure 3.36. In this example, a customer uses a broker to select a supplier.
Before the process choreography can be realized, the broker requires informa-
tion on the suppliers available. This information is gathered by the broker in a
separate process choreography, whose message flow is not shown in the figure.

The process choreography starts with the creating of an order by the cus-
tomer. Then, the customer sends a Request Supplier Info message to the bro-
ker. The broker receives this message and uses local information to find the
supplier most suitable for fulfilling the order. In the Send Supplier Info mes-
sage, the broker informs the customer about this supplier.

The customer receives this message and uses the information received to
send an order to the selected supplier, Supplier-A in this case. When the
supplier has processed the order, the supplier sends the goods to the customer,
and the process completes.

118 3 Business Process Modelling Foundation

In the example shown, the selection is performed using a third party, the
broker. While this is a valid option in scenarios where a broker has rich infor-
mation on a set of business partners, the selection can also be done locally,
that is, without the involvement of a third party.

In this case, the actual selection can be performed as a manual activity,
using information on suppliers available and capable of fulfilling the order.

Role resolution in this case is not performed by the business process man-
agement system, but by a knowledge worker. This task also matches the
service-oriented approach, where a service requestor (the knowledge worker)
uses the broker to select from among a set of services (supplier services) the
one that is suited best for the task at hand.

Standardized Software Interfaces

Standardized interfaces to existing software systems are another means of
flexibility in business process management. A variety of techniques to specify
software interfaces are known from software engineering and software archi-
tectures. It is a key concept to decouple the use of a software component
from its implementation, that is, to hide implementation details from usage
information, following the information hiding principle.

In the context of business process management, standardized software in-
terfaces are of crucial importance in system workflows, and also in human
interaction workflows, since the overall process structure can be decoupled
from the implementation of particular activities realized by software compo-
nents.

A flexible association of process activities with software systems allows us
to change the implementation of specific process activities without changing
the overall business process. There are two variations: the software system
realizing a particular activity can be defined at design time of the process or at
run time of the process instances. The first variant is discussed in this section;
the dynamic binding of software services to activity instances is discussed in
Section 7.4.

An example of changes in the implementation of business process activities
is represented in Figure 3.37. In the original implementation, an inventory
management system is used to realize the Check Inventory activity, and an
order management system is used to realize the Store Order and the Prepare
Invoice activities.

This situation is depicted in Figure 3.37 by dotted lines between the busi-
ness process activities and the information systems that realize them. We
assume that an ERP system is deployed to provide the functionality of the
order management system and of the inventory management system in an
integrated, robust, and scalable manner.

By standardized software interfaces, the business process activities can use
the functionality of the new system without changing the business process.
This enhances the flexibility of the business process implementation, because

3.10 Business Process Flexibility 119

Fig. 3.37. Business process uses ERP systems functionality to realize process ac-
tivities, while the business process remains unchanged

the realization of particular process activities can be changed without modi-
fying the business process.

This discussion describes an ideal setting, in which activity implementa-
tions can easily be exchanged. However, specific properties of legacy systems
make the definition of clean, standardized interfaces cumbersome, because
legacy systems offer their functionality typically by proprietary and often not
well documented interfaces.

This technological problem is also addressed by enterprise application inte-
gration systems, where adapter technology is in place to cope with this issue,
as discussed in Chapter 2.

In addition, the granularity with which legacy systems provide functional-
ity often does not match the granularity required by the business process. In
particular, legacy systems often realize complex subprocesses rather than in-
dividual activities in a business process. Sometimes, the processes realized by
legacy systems and the modelled business processes are not immediately com-
parable. These issues have to be taken into account when software interfaces
to existing information systems are developed.

One option to solving this problem is developing software interfaces that
make available the functionality provided by legacy systems with a granularity
that allows reuse of functionality at a finer level of granularity. The granularity
should match the granularity required at the business process level.

Depending on the legacy system, its complexity, software architecture,
and documentation, as well as the availability of knowledgeable personnel,
the required effort can be very high. If the need for finer-grained granularity

120 3 Business Process Modelling Foundation

and efficient reuse of functionality is sufficiently high, then partial or complete
reimplementation can be an option.

3.11 Architecture of Process Execution Environments

So far, this chapter has discussed the modelling of different aspects of a busi-
ness process. This section looks into the representation of a business process
management system capable of controlling the enactment of business processes
based on business process models.

Fig. 3.38. Business process management systems architecture model

Figure 3.38 shows a high-level business process management systems ar-
chitecture model consisting of components and relationships. The architecture
model contains the Business Process Environment, a Business Process Mod-
elling subsystem, a Business Process Model Repository, a Process Engine, and
a set of Service Providers. The roles of these constituents of the architecture
model are characterized as follows.

• Business Process Modelling : The business process modelling subsystem
is used for creating business process models, containing information on
activities, their operations, and the structure of the business process. This
architecture subsystem can be realized by business process modelling tools.

• Business Process Environment : The business process environment triggers
the instantiation and enactment of process instances based on process
models.

• Business Process Model Repository : The business process model repository
holds business process models that are created by the business process
modelling component.

3.11 Architecture of Process Execution Environments 121

• Process Engine: The process engine is responsible for instantiating and
controlling the execution of business processes. It is the core component
of a business process management system. This component is triggered by
the business process environment. It uses process models to instantiate and
control the enactment of process instances. To execute a particular activity
instance, it calls entities that act as providers of the required functionality.
In a service-oriented architecture, service providers are called to execute
individual services that realize business process activities.

• Service Providers: Service providers host application services that realize
business process activities. In the architecture model, service providers
represent an abstract entity that subsumes not only Web service providers
but also knowledge workers that realize particular activities in business
processes. The organizational and technical information that the process
engine needs in order to determine and access the service provider is also
stored in the business process model repository.

These components of the architectural model control the enactment of process
instances. To capture the distributed nature of business process executions,
the components and the service providers are represented by agents that com-
municate by sending and receiving messages, that is, the agents do not share
memory, but are distributed. These messages are sent along the arcs shown
in Figure 3.38.

Gateways are nodes in a process model that are used to guide the process
flow. Therefore, for each gateway node the process engine needs to perform
some action. This work that the process engine conducts is represented by a
gateway instance, just as the work defined by an activity model is represented
by an activity instance. A property of gateway instances is that the pro-
cess engine executes them, whereas activity instances are executed by service
providers, requiring nonlocal communication.

The events that occur within a process engine during the enactment of a
process instance are shown in Figure 3.39. The first event that occurs repre-
sents the occurrence of the start event in the process model. Let n1 be this
event.

The process engine detects that there is a process model deployed for this
event. Therefore, a process instance is instantiated. For each activity model in
the process model, an activity instance is instantiated; for each gateway node,
a gateway instance is created, represented by events i2 through i6. When the
instances are initiated, the AnalyzeOrder activity instance can be started,
resulting in event b2. After the termination of this activity instance in event
t2, the gateway instance is started, represented by event b3.

After the gateway instance terminates in event t3, the process engine can
decide which path to take. In the process instance shown, the advanced check
activity instance is disregarded and the simple check path is taken. Therefore,
the AdvCheck activity instance is skipped, represented by event s5. The Sim-
pleCheck activity instance is started (event b4) and later terminates in event

122 3 Business Process Modelling Foundation

Fig. 3.39. Process model and events of process instance

t4. Finally, the execution of the gateway instance and the occurrence of the
final event n7 terminate the process instance.

The event diagrams introduced are extended to capture agents involved
in the enactment of process instances. Each agent is represented by a hor-
izontal line, on which the events that occur in this agent are drawn. Time
proceeds from left to right. In addition to the events directly associated with
the execution of activity instances, the begin and end of a computation and
the sending and receipt of a message are also represented by events. Message
events of agents represented by directed arcs connecting the send event with
the corresponding receive event.

Fig. 3.40. Event diagram of business process execution environment

3.11 Architecture of Process Execution Environments 123

The business process environment, the process engine, and two service
providers are the agents represented in the event diagram. Since the operation
of the business process modelling component is not the focus of attention,
these components of the architecture model are not represented as agents in
the event diagram.

An event diagram of a process instance involving the agents of a business
process execution environment is shown in Figure 3.40. To ease presentation,
initialization events and events associated with gateway instances are omitted
in that figure.

When the initial event of the process model occurs in the business pro-
cess environment, the process engine instantiates a process instance, including
its activity instances. Then, the process engine determines the first activity
instance to be executed. A service provider is determined for executing this
activity, in the example, Service Provider 1.

The service provider receives this message and starts an AnalyzeOrder
activity instance, marked by event b2. Once that activity instance is completed
(t2), the service provider returns a message to the process engine. This message
typically contains the return value of that invocation. Using this information
and possibly other information, the process engine can evaluate the condition
associated with the gateway node. Based on the decision made by the process
engine on behalf of the gateway, the AdvCheck activity instance is skipped
(skip event s5) and the SimpleCheck activity is started.

In order to realize this process instance, the process engine sends an in-
vocation message to the service provider responsible for executing the simple
check service. Service Provider 2 receives this message and starts the Sim-
pleCheck activity, marked by event b4.

Once this activity instance completes in event t4, the service provider
returns a message to the process engine, which then executes the join gateway
node (events omitted). The process instance completes with the final event
and by sending the respective message to the business process environment,
informing it about the termination of the process instance.

As will be detailed in the next chapter for more complex workflow patterns,
control flow patterns restrict the ordering of execution events for activities
involved in a business process. For instance, an AnalyzeOrder activity can
only be started after the initial event has occurred, and a SimpleCheck activity
can only be started after the exclusive or gateway has completed, and so on.
The execution semantics of a process instance based on a process model is
described by restrictions on the events and their ordering during the execution
of process instances.

Bibliographical Notes

The business process modelling foundation is based on conceptual modelling
techniques that are an important basis of computer science. To structure the

124 3 Business Process Modelling Foundation

field, object-oriented design techniques are used, most prominently structure
diagrams and state transition diagrams of the Unified Modeling Language,
introduced in Booch et al. (2005). Event diagrams to illustrate and reason
about distributed systems were introduced in Lamport (1978).

Functional breakdown of business functions from top-level functions to
operational activities was developed in Porter (1998) in the context of value
chains. Based on the early foundation of business process management and
the functional breakdown of enterprises, Michael Hammer and James Champy
brought process orientation to the agenda, introducing a radical approach to
business process reengineering in Hammer and Champy (1993). Davenport
focuses specifically on the role of information technology in reengineering work
procedures in enterprises, as detailed in Davenport (1992).

In this textbook, we have assumed that the relationships between processes
at different levels of abstraction are always hierarchical. This is a simplifying
assumption which is useful for the purpose of this textbook. However, in
real-world process model collections we also see non-hierarchical relationships
that include, for instance, overlaps that do violate the hierarchical structure.
The reader interested in behavioural relationships between process models on
different levels of abstraction is referred to Weidlich (2011) and Weidlich et al.
(2011).

In the design of software systems, it is tradition to investigate different
aspects independently of each other. This approach is also taken in work-
flow management, where different workflow modelling perspectives have been
identified in Jablonski (1997). A conceptual model of the core entities in work-
flow management is introduced in Weske (2000). Data modelling in relational
database systems is based on the Entity Relationship approach introduced by
Peter Chen in Chen (1976). Data modelling techniques are also discussed in
database design, as, for instance, in Ramakrishnan and Gehrke (2002) and
O’Neil and O’Neil (2000).

Organizational modelling in the context of business process management
was addressed by Russell et al. (2005) in the context of resource patterns.
Interfaces to software systems are discussed in textbooks on middleware tech-
nology, including Henning and Vinoski (1999), where the Interface Definition
Language of the Common Request Broker Architecture is discussed. Reijers
(2005) discusses trade-offs between generalization and specialization in re-
source allocation.

4

Process Orchestrations

Business process models specify the activities, with their relationships, that
are performed within a single organization, that is, they specify process or-
chestrations. A process engine acts as a centralized agent to control process
orchestrations. Process orchestrations provide a detailed view on the activi-
ties of processes and their execution constraints. This chapter is organized as
follows.

Section 4.1 introduces control flow patterns, a yardstick in process con-
trol flow structures. The patterns will be described both textually and more
formally using the event-based approach introduced in the previous chapter.
Section 4.2 provides a compact introduction to Petri nets. Different Petri net
classes are introduced, including condition event nets, predicate transition
nets and, coloured Petri nets. An informal perspective on business process
modelling is taken in Section 4.3, where event-driven process chains are dis-
cussed. This approach is widely used in the business domain to model business
processes from a pragmatic, application-oriented point of view.

Workflow nets are an important Petri net class tailored towards express-
ing business process models; workflow nets are discussed in Section 4.4. While
workflow nets are well suited to modelling business processes and analyz-
ing some of their structural properties, workflow nets exhibit a number of
limitations. These limitations have led to the development of a new process
modelling language, called Yet Another Workflow Language, introduced in
Section 4.5. Graph-based workflow languages that also take into account data
dependencies between process activities are investigated in Section 4.6.

In the context of service-oriented architectures and service composition,
the Business Process Model and Notation has been proposed as a graphical
notation to combine the advantages of a simple and convenient notation and
clear semantics. The Business Process Model and Notation is introduced in
Section 4.7.

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 4,
© Springer-Verlag Berlin Heidelberg 2012

125

http://dx.doi.org/10.1007/978-3-642-28616-2_4

126 4 Process Orchestrations

4.1 Control Flow Patterns

Control flow patterns provide a yardstick for expressing process orchestrations.
Control flow patterns are independent of concrete process languages, so that
each pattern can be expressed in different process languages. Control flow
patterns can also be used to compare the expressiveness of process languages.

Basic control flow patterns include sequence, and split, and and join, as
well as exclusive or split and exclusive or join. These control flow patterns
are supported by virtually any process metamodel. Control flow patterns are
defined at the process model level. Their execution semantics, however, applies
to process instances.

In this section, the semantics of control flow patterns will be investigated
on the basis of the events and event orderings they imply on process instances.
Due to its simplicity, the sequence pattern is well suited to explaining the
general approach.

Consider a process model P = (N,E, type) according to Definition 3.3
with activity models A and B and a sequence flow A → B. This process
model defines an ordering on the activity instances associated with A and
B in the context of a single process instance: for each process instance, the
activity instance associated with B can only start after the activity instance
associated with A has terminated.

As a result, the process model restricts the ordering of events that occur
during process instances. In the example, the termination event of the activity
instance associated with activity model A must occur before the begin event
of the activity instance associated with activity model B.

Each control flow construct is represented in the process model by a gate-
way. As with activity instances, there are instances for gateways, for example,
an instance of a sequence flow ordering the execution of two activity instances.
Each gateway instance has a begin event and a termination event. For a uni-
form treatment of control flow structures, sequences are also considered as
gateways, as discussed above.

Activity models are denoted by capital letters, A,B,C, . . . , while the as-
sociated activity instances are denoted by a, b, c, In case multiple activity
instances are associated with an activity model in the context of a given pro-
cess model, subscripts are used, for instance, a1, a2, Gateways are typically
denoted by G, and g is an instance of a gateway. Let P be a process model
and p a process instance based on this model with an event set Ep.

Because of the strong link between events of process instances and states of
activity instances, the state transition diagram already discussed in Section 3.4
is shown again in Figure 4.1.

Sequence

The sequence pattern defines that an activity instance b in a process instance p
is enabled after the completion of activity instance a in p, with process model

4.1 Control Flow Patterns 127

Fig. 4.1. State transition diagram for activity instances

P = (N,E, type) containing activity models A, B, and a gateway model
G such that A,B ∈ NA, G ∈ NG, E ⊇ {(A,G), (G,B)}, and type(G) =
Sequence.

The application of the sequence pattern in A → B induces an event order-
ing between the termination event of a (and the activity instance of activity
model A) and b, such that b can only be enabled after a has terminated. This
approach relates the control flow patterns directly to the state transitions of
activity instances.

In particular, the state transition from init to ready of an activity instance
b can only be done after the state transition from running of a to terminated
of a has occurred. Note that running and terminated are states that activity
instances can assume, as represented in Figure 4.1.

In process instance p, for a termination event ta ∈ Ep of an activity instance
a, there is an enable event eb ∈ Ep of an activity instance b, such that ta < eb.
The events and their ordering as induced by the sequence pattern are shown
in Figure 4.2.

Fig. 4.2. Sequence pattern, with event diagram of process instance

128 4 Process Orchestrations

The discussion captures well the case of a single activity instance per
activity model. However, if the activity models are part of a loop, then there
might be multiple activity instances based on activity models A and B.

Therefore, the execution semantics of the sequence control flow pattern
needs to be refined so that eventually for each termination event of some
activity instance a1, a2, . . . there is an enable event of an activity instance
b1, b2,

Fig. 4.3. Sequence pattern as part of a loop and event diagram showing three loop
iterations

A fragment of a process model where A and B are part of a loop is shown
in Figure 4.3; to realize this loop, an exclusive split gateway, an exclusive or
join gateway, and a set of sequence flows are added.

A process instance based on this process model is shown in the lower part
of that figure. The loop is iterated three times, resulting in activity instances
a1, b1, . . . , a3, b3. Rather than showing all events of these activity instances,
just the enable and termination events are displayed. As can be seen in the
event diagram, in each iteration of the loop, the activity instance ai terminates
before bi can start, for i ∈ {1, 2, 3}.

However, the ordering “first a then b” can be violated if a and b belong to
different iterations of the loop. For instance, the termination event of b1 occurs
before the start event of a2. In order to capture loops properly, it is necessary
to define that for each termination event of a there is an enable event of b such
that ta < bb. This condition is satisfied by the process instance: for ta1 < eb1,
ta2 < eb2, and ta3 < eb3.

These event orderings relate termination events to enable events and not
directly to begin events. Since begin events can only occur after the respective
enable events have occurred, it is guaranteed that the termination event of ai
occurs before the begin event of bi.

And Split

An and split or parallel split is a point in a process model where a single
thread of control splits into multiple threads of control which are executed

4.1 Control Flow Patterns 129

concurrently. Consider a process model with activity models A, B, and C and
a gateway G such that E ⊇ {(A,G), (G,B), (G,C)} and type(G) = AndSplit.

Since thereby the process model P = (N,E, type) is well defined, we refrain
from providing the formal definition of P with the subsets of N .

Fig. 4.4. And split pattern

An and split determines that for each termination of an activity instance
a there are enable events of activity instances b and c, and these events occur
after the termination event of a. Therefore, for each ta ∈ Ep there exist eb, ec ∈
Ep such that ta < eb ∧ ta < ec.

And Join

An and join is a point in a process model where multiple concurrent threads
converge into one single thread of control. It is an assumption of this pattern
that each incoming branch is executed exactly once.

Consider a process model with activity models B, C, andD, and a gateway
G such that E ⊇ {(B,G), (C,G), (G,D)} and type(G) = AndJoin. For each

Fig. 4.5. And join pattern

enable event of an activity instance d, there are termination events of activity
instances b and c, such that the termination events occur before the enable
event. Therefore, for each ed ∈ Ep ∃tb, tc ∈ Ep such that tb < ed ∧ tc < ed.

130 4 Process Orchestrations

Xor Split

An xor split or exclusive or split is a point in a process model where one of
several branches is chosen. A process model with activity models A, B, and
C and a gateway G such that E ⊇ {(A,G), (G,B), (G,C)} and type(G) =
XorSplit is shown in Figure 4.6.

Fig. 4.6. Xor split pattern

The execution semantics of an exclusive or split determines that for each
termination of an activity instance a associated with activity model A there is
either an enable event of activity instance b or an enable event of an activity
instance c, but not both: for each ta ∈ Ep: eb ∈ Ep ⇔ ec /∈ Ep, such that either
ta < eb or ta < ec.

Xor Join

An xor join or exclusive or join is a point in a process model where two
or more alternative threads come together without synchronization. It is an
assumption of this pattern that exactly one of the alternative branches is
executed.

Consider a process model with activity models B, C, andD, and a gateway
G such that E ⊇ {(B,G), (C,G), (G,D)} and type(G) = XorJoin.

For each termination event of an activity instance b or c there is one and
only one enable event of an activity instance d. Therefore, for each ti ∈ Ep,
such that i ∈ {b, c} there is an event ed ∈ Ep such that ti < ed.

While it is an assumption of this pattern that the branches are alternative
and none of them are ever executed in parallel, the branches can be part of
a loop. But even in this case, for each iteration of a loop, the branches are
alternative and have exclusive or semantics.

4.1 Control Flow Patterns 131

Fig. 4.7. Xor join pattern

Or Split

An or split is a point in a process model where at least one branch from a
set of branches is chosen. Therefore, the selection of any nonempty subset
of branches is a proper behaviour of an or split. Figure 4.8 shows a process
model with activity models A, B, and C and a gateway G such that E ⊇
{(A,G), (G,B), (G,C)} and type(G) = OrSplit.

An or split restricts the events of related activity instances as follows: for
each termination event of a there is a subset of enable events of b and c. In
general, for each termination event of a there can be enable events for any
subset of activity instances on the outgoing branches of the split.

In the example, the respective enable events are eb, ec ∈ Ep, and any subset
of this event set reflects an acceptable behaviour of the or split, as long as
ta < eb and ta < ec are satisfied (if both branches are selected).

The three kinds of proper behaviour of the or split with two outgoing
edges are shown in Figure 4.8. In the general case where the or split has n
outgoing edges, 2n − 1 options are possible: all nonempty subsets that can be
created out of n activities.

Or Join

An or join is a point in a process model where multiple threads of control
converge into one single thread. It is an assumption of this pattern that a
branch that has already been activated cannot be activated again while the
merge is still waiting for other branches to complete.

A process model with activity models B, C, and D, and a gateway G such
that E ⊇ {(B,G), (C,G), (G,D)} and type(G) = OrJoin is shown in Fig-
ure 4.9. Once all active branching paths are completed and the respective end

132 4 Process Orchestrations

Fig. 4.8. Or split pattern

events of the final activities in these paths have occurred, the synchronization
takes place.

In Figure 4.9, there are three behavioural options for the join. Either only
the upper thread is taken and only activity instance b is enabled, or only the
lower thread is taken and c is enabled, or both threads are performed and b
and c both are enabled. In general, any nonempty subset of the threads are
valid options, so that 2n − 1 options are allowed for n incoming edges of the
or join.

The or join is a problematic control flow pattern. The problem is that
the join cannot locally decide how long to wait for its activation. Even from
the simple process model fragment shown in Figure 4.9, this problem can be
explained: once one incoming branch is triggered, for instance, by termination
of b, how should the or join react? There are two options:

• Wait : The or join waits before the activity instance d is triggered, because
the other incoming path—which completes in activity instance c—can still
be executed.

• Trigger : The or join triggers d immediately after the termination of b.

The problem is that we cannot decide which of these alternatives the correct
one is. After the first incoming branch has terminated, how long should the
or join wait for the other branch to complete?

4.1 Control Flow Patterns 133

Fig. 4.9. Or join pattern

If no additional knowledge is available, there is no way of deciding whether
c will eventually terminate for the particular process instance. Since there is
no upper bound on the waiting time, realizing the waiting alternative leads
to a deadlock situation if the second thread is never activated.

If the or join triggers d after one incoming branch is activated, a situation
might occur in which c terminates after d has already started! This behaviour
contradicts the semantics of the or join, since in this case it has to wait until
both branches complete. In this book, the or join semantics is re-visited in
Sections 4.6 and 6.5.

Multiple Merge

A multiple merge or multi-merge is a point in a process model where two or
more concurrent threads join without synchronization. The activity following
the merge is started for every activation of every incoming branch.

134 4 Process Orchestrations

The multi-merge is functionally equivalent with the exclusive or join; the
only difference is that the latter assumes that only one of its incoming branches
gets activated. This assumption is not in place for the multi-merge pattern.

Fig. 4.10. Multi-merge pattern

A process model with activity models B, C, and D, and a gateway G
such that E ⊇ {(B,G), (C,G), (G,D)} and type(G) = MultiMerge is shown
in Figure 4.10. For each terminating activity instance b and c, one activity
instance associated with activity model D is started. This means that for each
termination event ti ∈ Ep, where i ∈ {b, c}, there is an enable event ed that
occurs after the respective termination event, that is, ti < ed, i ∈ {b, c}.

The multiple merge pattern spawns off new threads of control. These
threads need to be identified so that future joins can be realized properly.
These aspects are illustrated in an example shown in Figure 4.11, where a
process model with an and split followed by a multi-merge is shown. As a
result, any of the threads induced by the and split will survive the multiple
merge and spawn a new instance for activity model D and of the activity
models following D in the process model.

Each of the threads of control spawned off by the multi-merge is subject
to the and split/and join shown in the process model. The and join requires
information on the identity of the threads that come in; otherwise, situations
could arise in which activity instances that belong to different threads of
control are synchronized. These issues can be illustrated by the event diagram
shown in Figure 4.12. This diagram can be considered an abstract form of an
event diagram in which the lifetime of each activity instance is shown as a line
with borders marking the enabling and terminating of the activity instance.

The process starts with activity instance a, followed by the concurrent
execution of b and c. Assuming b terminates before c does, the multi-merge

4.1 Control Flow Patterns 135

Fig. 4.11. Multi-merge example might lead to incorrect synchronization of branches

spawns off a new thread of control, called thread 1 in Figure 4.11. The first
activity instance of this thread is d1.

While d1 is still running, c terminates, and the multi-merge spawns off
thread 2, starting with d2. When d1 completes, the and split occurs, and
concurrent threads are created, realized by activity instances e1 and f1.

After d2 terminates, e2 and f2 are created. Assuming that f1 and e2 ter-
minate, the and join faces a situation in which there are termination events of
activity instances on its incoming edges. Knowing that these belong to differ-
ent threads of control (f1 belongs to thread 1, while e2 belongs to thread 2),
the and join can “decide” that these threads cannot be synchronized, although
they belong to the same process instance.

Fig. 4.12. Event diagram of a process instance based on the process model shown
in Figure 4.11

Discriminator

The discriminator is a point in a process model that waits for one of the
incoming branches to complete before activating the subsequent activity. From

136 4 Process Orchestrations

that moment on it waits for all remaining branches to complete and “ignores”
them. Once all incoming branches have been triggered, it resets itself so that
it can be triggered again. This allows a discriminator to be used in the context
of a loop.

If gathering the ignored branches were not part of the functional behaviour
of the discriminator pattern, there would be no way to distinguish a second
iteration of a loop from a late branch of its first iteration.

Fig. 4.13. Discriminator pattern

A process model with activity models B, C, and D, and a gateway G such
that E ⊇ {(B,G), (C,G), (G,D)} and type(G) = Discriminator is shown in
Figure 4.13. To discuss the execution semantics of the discriminator, assume
that activity instance b terminates while c is still active. If this is the case, d
is triggered, and the discriminator continues to wait for the termination of c.
When c terminates, the discriminator is again ready for the next thread.

Fig. 4.14. Discriminator example

An example involving the discriminator pattern is shown in Figure 4.14.
The process starts with activity instance a before an and split occurs that
spawns activity instances b1 and c1. Assuming b1 terminates first, the discrim-
inator fires and enables d1. When d1 terminates, assuming a new iteration of

4.1 Control Flow Patterns 137

the loop is required, new activity instances based on B and C are created.
These activity instances are b2 and c2. What is remarkable in this example is
that there are two instances of activity model C active concurrently, assuming
c1 has not yet terminated.

Even if c2 terminates before c1, the semantics of the discriminator makes
sure that it can only fire and enable d2 after the first iteration has completed,
that is, only after the remaining activity instance c1 has terminated. If this
is the case, the discriminator can fire a second time, to enable d2. The event
diagram of this process instance is shown in Figure 4.15.

Fig. 4.15. Event diagram of discriminator example

Formally, for each enable event of d there are termination events of b and
c, and (at least) one of these termination events occurs prior to the enabling
event of d, that is, ∀ed ∃tb, tc ∈ Ep, such that tb < ed ∨ tc < ed.

In addition, the discriminator can become active only after the termination
events of all incoming edges that belong to the thread that has spawned the
current activities have occurred. In the example, d2 can only be enabled after
the termination operation of c1 has occurred.

N-out-of-M Join

The N-out-of-M join is a generalization of the discriminator. It is a point in
a process model where M parallel paths converge into one. The subsequent
activity is initiated after N ≤ M paths have completed and the respective
termination events have occurred. All activities on the M − N remaining
paths can proceed unharmed, but their outcome is ignored.

As with the discriminator, once all incoming branches have fired, the join
resets itself so that it can be performed again. The N-out-of-M join is illus-
trated in Figure 4.16.

A concrete example of the N-out-of-M join is a request for quotation pro-
cess, in which quotations are invited from five companies, although the process

138 4 Process Orchestrations

Fig. 4.16. N-out-of-M join pattern

can continue after receiving three quotations. Without a dedicated N-out-of-
M join, this business rule would be complex to model, because at design time
it is not known which of the companies will respond to the request in time.

There are variations on this control flow pattern with respect to the time
when the number N of sufficient threads is determined: it can be determined
at design time or at run time. The run time specification of N needs to be
done in an activity instance that is executed before the join.

There might be additional variations in the design time specification of the
N-out-of-M join if it is part of a loop. Design time specification of N could
therefore be taken within the loop, so that different iterations of the loop use
different values N for the number of sufficient threads to complete.

The N-out-of-M join degenerates to an and join if N = M . For N = 1,
however, it does not realize an exclusive or join, because the assumption of
the exclusive or join is not met (only one thread will be activated).

Nor does it realize a multi-merge, because in the multi-merge the comple-
tion of the second and following threads would enable additional instances of
follow-up activities, while the 1-out-of-M join ignores them. The 1-out-of-M
join, however, realizes the discriminator pattern.

Arbitrary Cycles

An arbitrary cycle is a point in a process model where one or more activities
can be executed repeatedly.

Fig. 4.17. Graphical representation of arbitrary cycles pattern

4.1 Control Flow Patterns 139

An arbitrary cycle is graphically depicted in Figure 4.17. In this example,
a sequence consisting of activity models A, B, and C is iterated. The iteration
is represented by an exclusive or split that decides whether to iterate the cycle
or whether to leave it and continue with activity instance d, associated with
activity model D. In case the loop is iterated, the exclusive or join triggers
another instance associated with activity model A.

As this example shows, arbitrary cycles are expressed with other control
flow patterns, for instance, exclusive or split and exclusive or join. Since these
control flow patterns have been specified already, no additional definitions are
required in order to define the arbitrary cycles pattern.

Fig. 4.18. Arbitrary cycles example, using multiple merge pattern

A more complex example of a cycle involving the multi-merge pattern is
shown in Figure 4.18. In this example, the cycle enters one of two concurrent
branches of an and split whose branches are joined by a multi-merge.

The process starts by activity instance a, followed by the concurrent ex-
ecution of b1 and c1. When c1 completes, the first firing of the multi-merge
spawns off d2. We assume that the loop is not taken, so that e2 is started,
before this thread terminates.

When b1 terminates, the multi-merge creates another instance of activity
model D, namely d3. If the loop is iterated, the second instance of activity
model B is created, that is, b3 (it holds the same thread identifier than the
previous activity instance). When b3 terminates, d4 is started, and the loop
can be entered again by spawning off b4. At some point, the loop will be left
and the process will terminate.

This example shows that the multi merge is a quite powerful construct,
since it allows loops being part of a concurrent branch. However, this process
design might lead to situations, where threads overtake each other in the
process flow. This happens, for instance, if b2 in the first iteration of the loop
gets delayed and b3 is executed quickly in the second iteration of the loop.
This is a valid behaviour of the process model shown, but modelling experts
need to be aware of this execution semantics.

There is also an issue with the termination of this process. Actually, the end
of the process is signalled twice, since each firing of the multi-merge creates

140 4 Process Orchestrations

a new thread, each of which finally terminates after executing an activity
instance of activity model E. This behaviour is not desired, as will be discussed
in the context of the soundness property in Chapter 6.

Notice that an and join gateway instead of the multi-merge would lead
to a deadlock situation, once the loop is entered for the first time. Also, the
parallel branches are synchronized, so that d2 can only be started once both
b1 and c1 have completed.

Implicit Termination

The implicit termination pattern is defined as follows: a given process instance
should be terminated when there is nothing else to be done. This means, there
is no activity instance in the process instance in the init, ready, or running
state and—as a result—no activity instance can be become enabled.

While implicit termination is defined as one of the control flow patterns,
its role differs with respect to the other patterns. It does not relate activity
instances with each other, such as, for instance, the sequence pattern or the
split and join patterns discussed. It represents a termination condition of an
overall process.

In several process languages, termination is explicit, because there is ex-
actly one state in the process that marks its termination. If there are many
states in which the process can terminate, then termination is implicit.

Multiple Instances Without Synchronization

More important than implicit termination are the patterns involving multiple
activity instances. These activity instances are based on a single activity model
in the context of a business process.

There are many situations that can be expressed properly by multiple
instances patterns. For instance, assume an order process in which an incoming
order contains a number of order lines. For each of these order lines, a check
activity needs to be executed. This means that only at run time can the
business process management system decide how many activities actually need
to be instantiated in order to perform the required checking activities.

The multiple instances without synchronization pattern is defined as fol-
lows. In the context of a single process instance, multiple activity instances
of one activity model can be created. No synchronization of these activity
instances takes place.

An example of the multiple instances without synchronization pattern is
shown in Figure 4.19. In the process model shown, activity model B uses
the pattern. After the termination of activity instance a, a number of activity
instances are initiated and enabled for activity model B. In the event diagram,
activity instances b1, b2, and b3 are shown. These instances are enabled and
can be started.

4.1 Control Flow Patterns 141

Fig. 4.19. Example for multiple instances without synchronization

The term “without synchronization” in the context of this example means
that the follow-up activity instance c can be enabled immediately after the
instances for B have been enabled. Since there are no assumptions on the
execution times of activity instances, c can terminate while activity instances
of the multiple instances activity are still running. In the event diagram shown,
b1 and b2 are still running when c has already completed.

This behaviour of the pattern has some consequences. First of all the con-
trol flow between activity models B and C does not—strictly speaking—have
the semantics of a sequence pattern, since an instance of C can be enabled
while instances of B are still active. As a result, the sequence pattern is some-
how violated by the multiple instances without synchronization pattern.

This pattern causes problems not only with the sequence flow, but also
with the termination of the overall process. Since the activity instances are
not synchronized, it cannot be guaranteed that these activity instances have
terminated when the end of the process is reached. This means that certain
execution guarantees related to soundness properties (which will be discussed
in Chapter 6) cannot be satisfied.

Multiple instances patterns can be distinguished for the point in time
when the actual number of instances is determined. The multiple instances
without synchronization pattern does not make any assumptions on whether
the number of instances is defined at design time or at run time. This is
subject of the control flow patterns discussed next.

Multiple Instances With A Priori Design Time Knowledge

In the multiple instances with a priori design time knowledge pattern, the
number of activity instances of an activity model is known at design time.

142 4 Process Orchestrations

These activity instances are synchronized, so that once all activity instances
have completed, the follow-up activity is enabled.

Fig. 4.20. Example for multiple instances with a priori design time knowledge

Figure 4.20 shows an example of the multiple instances with a priori design
time knowledge pattern. Two things are remarkable in the event diagram.

The follow-up activity c can only be enabled after the last activity instance
of B has completed, in this case b1. This property is shared by all multiple
instances patterns that are “synchronized.”

The specific property of the pattern at hand is that the number n = 2 of
activity instances of B is defined at design time, that is, as part of the process
model. Depending on the process language used, there can be an attribute of
the activity model B that states, for instance, NrOfInstances = 2;.

Multiple Instances With A Priori Run Time Knowledge

In the multiple instances with a priori run time knowledge pattern, the num-
ber of instances of a given activity model depends on the characteristics of the
case or the availability of resources. Therefore, it is only known at some stage
during run time of the process instance, but before the instances of the multi-
ple instances activity are created. This pattern also assumes synchronization
of the activity instances before the next activities can be enabled.

Using the process model already shown in Figure 4.20, this pattern is
distinguished from the multiple instances with a priori design time knowledge
pattern by the specification of the number of activity instances.

Rather than specifying the number of activity instances directly, we define
an expression. This expression is evaluated during run time to compute the
number of activity instances for a specific process instance. This computa-
tion occurs before the activity instances of the multiple instances activity are
created.

A process language might provide a functional representation of the num-
ber of instances to create, so that, for instance,

4.1 Control Flow Patterns 143

NrOfInstances = GetNoOfLineitems(order);

might be a valid term. Here, the number of activity instances is computed by
a function that takes the current order and returns the number of line items
in it. An individual activity instance is then performed for each line item.

Multiple Instances Without A Priori Run Time Knowledge

In the multiple instances without a priori run time knowledge pattern, the
number of instances of a given activity is not known during design time; nor
is it known at any stage during run time before the instances of that activity
are enabled.

The difference with the previous pattern is that even while some of the
instances are being executed or have already completed, new activity instances
can still be created.

Fig. 4.21. Example for multiple instances without a priori run time knowledge
pattern

Figure 4.21 shows that, first, two instances of B are created. During the
execution of these activity instances, new activity instances are created. When
all instances of B have terminated—in the example, b5 is the last activity
instance to complete—the next activity instance in the process can be enabled.

In order to realize this pattern in a process language and in a process
engine, there need to be additional assumptions in place. The main question
in this context is, until what point in time is it possible to create new activity
instances of B?

One choice would be to indicate that while b’s are running, new instances
of the multiple instances activity can be created. While this is a valid choice,
realization of this might not be practical, because it would assume that the

144 4 Process Orchestrations

activity instances would include the creation of new instances, thereby inter-
twining process management tasks (start new process instance) and doing the
actual work.

An alternative solution is to install a management activity related to the
multiple instances activity. This management activity explicitly defines the
end of the multiple instances activity. It is also responsible for creating new
instances of the multiple instances activity. It can even create new instances
after all instances have terminated. This is a valid approach, since in dynamic
settings, there might be an explicit decision about whether additional activity
instances are required to achieve the business goal related to the multiple
instances activity.

In the first alternative—if the follow-up activity is automatically enabled
after the current instances of the multiple instances activity have completed—
there are no options to create new instances of the multiple activity task once
all instances have completed.

Fig. 4.22. Multiple instances without a priori run time knowledge pattern, including
management task

The second alternative, with a dedicated management task for the multiple
instances activity, is illustrated in Figure 4.22. In the event diagram, the
management task is denoted by b. When the management task completes, the
follow-up activity instance can be enabled.

Deferred Choice

Deferred choice is a state-based pattern. State-based patterns capture the im-
plicit behaviour of processes that is based not on the current case but rather on
the environment or other parts of the process. Some of the following patterns

4.1 Control Flow Patterns 145

require the existence of an external process that represents the environment.
This process is used as a source for external events.

A deferred choice is a point in a process model where one of several
branches is chosen. In contrast to the exclusive or split, the choice is not
made explicitly—for example, based on data values or a user decision—but
several alternatives are offered to the environment.

The environment activates one of the alternatives, and the other branches
are then withdrawn. Because the choice is delayed until one of the alternative
branches has actually been started, the moment of choice is deferred to a point
in time that is as late as possible.

Regarding the states of activity instances, each of the alternative branches
is represented by one activity instance in the init state. The state transition
from init to enabled is triggered by the environment, for instance, by sending
a message. After the state transition has occurred, the activity instances that
were not chosen enter the skipped state.

Fig. 4.23. Example of deferred choice pattern

Figure 4.23 shows an example of a deferred choice. In that example, after
a terminates, activity instances b, c, and d are created. Assuming that b is

146 4 Process Orchestrations

selected by receiving a message, b enters the enabled state, while c and d are
no longer required. Therefore, these activity instances are skipped.

Sequential Execution without A Priori Design Time Knowledge

The sequential execution without a prior design time knowledge pattern is
described as follows: a set of activity instances is executed sequentially in an
order that is decided at run time. No two activity instances of this set are
active at the same point in time.

Originally this pattern was called interleaved parallel routing ; however,
this was somewhat misleading: The activity instances do not interleave, and
they are not executed in parallel. They are executed sequentially in an order
that is defined while the process instance runs. Therefore, in this book the
term sequential execution without a prior design time knowledge refers to this
pattern.

An example of this pattern is shown in Figure 4.241 Activity models B,C,
andD are part of this pattern, so any sequential execution of activity instances
b, c and d are valid. This pattern is very useful in situations in which several
activities need to be executed sequentially and in any order. Since for any n
elements there are n! permutations, each of which corresponds to a sequential
execution ordering of n activity instances, modelling these explicitly is not
feasible.

The pattern can even be extended so that the execution ordering is not de-
fined before the first activity instance of the pattern has started. The sequence
can be defined also during the execution of the activity instances. A concrete
example is as follows: three persons need to work on a file, and each person
works on a separate part, so that the order in which the work is conducted is
not relevant. In this setting, after completing the first activity instance, one
person selects the next person to do his or her work.

The sequential execution in this case is induced by the single resource—
the file—that cannot be shared by the persons. Therefore, current allocation
of work to persons can be taken into account when deciding at run time on
the actual sequence in which the activities are executed.

Milestone

The milestone pattern can be used to define that an activity is only enabled
if a certain milestone has been reached that has not expired yet.

This pattern is illustrated by an example. Consider a process model with
activity models A,B, and C. With a milestone pattern, the process designer
can determine that activity instance a is enabled only if b has been executed

1 The diagram uses BPMN to illustrate this pattern, even though the BPMN exe-
cution semantics would allow concurrency between A, B, and C.

4.1 Control Flow Patterns 147

Fig. 4.24. Sequential execution without a priori design time knowledge; any se-
quential execution ordering of B, C, and D is possible

and c has not been completed. As a result a is not enabled before the execution
of b and after the execution of c.

The example is illustrated in Figure 4.25. Since the informal process mod-
elling notation that served well in presenting the patterns so far does not
provide an explicit notation for state, Petri nets are used to express the mile-
stone pattern (Petri nets will be introduced in the next section in detail).

The milestone indicates that the execution of an activity a is possible only
after activity b is executed and before activity c is started. The execution of a
does not change the state of the process, that is, after executing a, the upper
process is still in a state where a token is at p1. There can also be multiple
instances a1, a2, . . . of activity model A, as long as c has not started and as
long as there are token available in p2. These options are shown in the lower
part of Figure 4.25.

Run Time Patterns

In addition to the patterns introduced above, there are run time patterns
defined that are—strictly speaking—not part of a process model. They, rather,
characterize the functionality provided by a business process management
system.

The first of these patterns is the cancel activity pattern. When an activ-
ity instance is cancelled, it enters the cancelled state. The cancelled state is

148 4 Process Orchestrations

Fig. 4.25. Example of milestone pattern

represented in the advanced state transition diagram for activity instances,
shown in Figure 3.10 on page 85.

The second run time pattern is the cancel case pattern, in which all activ-
ity instances of a process instance are cancelled so that the process instance
comes to a halt. To cancel an activity instance, there are different options that
depend on the environment in which the activity instance is being executed.
If it is a manual activity, then the knowledge worker needs to be informed
about the cancellation, so that the person ceases working on the case. She
could also perform some cleanup activities, if need be.

If the functionality to execute the activity instance is provided by an in-
formation system, then the realization of the cancel activity pattern depends
on the type of information system used. If the information system is realized
by a database application, then terminating the application is a valid option.

If the database application runs—at least the parts that realize the activity
instance to be cancelled—in a single database transaction, then cancellation
can be realized by aborting the transaction. The database management system
guarantees that the database is restored to the state before the execution of
the activity instance.

If on the other hand the information system is not based on a transactional
information system, cancelling an activity can be much harder. There might

4.2 Petri Nets 149

be certain parts that are already stored in some kind of non-transactional
data store. Identifying these parts and manually undoing the effects of the
partial activity instance is a cumbersome and in some cases infeasible task.

Also in manual activities, actions might already have been performed that
cannot be undone easily, such as sending an email message. In this case, the
cancellation of an activity instance involves manual activities, such as sending
another email message withdrawing the former, or making a phone call.

To summarize, it is easy to indicate the behaviour of the cancel activity
and cancel case patterns; however, the realization of these patterns in real-
world business process management systems is far from that.

4.2 Petri Nets

Petri nets are one of the best known techniques for specifying business pro-
cesses in a formal and abstract way and, as such, Petri nets are an important
basis for process languages. “Formal” means that the semantics of process
instances resulting from process models specified in Petri nets is well defined
and not ambiguous. Petri nets are “abstract”, because they disregard the ex-
ecution environment of a business process, so that all aspects other than the
functional and process perspectives are not covered. The functional perspec-
tive in itself is treated in an abstract way, as will be explained below.

In this section, Petri nets are introduced in a pragmatic manner. A large
body of literature is available in the Petri net area; the main references relevant
to business process management are discussed in the bibliographical notes.

In his Ph.D. thesis, Carl Adam Petri generalizes automata theory by con-
currency. He introduces a new modelling approach that has a graphical repre-
sentation as well as an equivalent mathematical formalization. Petri nets can
be used to model dynamic systems with a static structure. The static struc-
ture is represented by a Petri net, and the dynamic behaviour is captured by
the token play of the Petri net.

Petri nets consist of places, transitions, and directed arcs connecting places
and transitions. They are bipartite graphs, so that arcs never connect two
places or two transitions. In graphical notations, places are represented by
circles, transitions by rectangles, and connectors by directed arcs. Transitions
have input and output places. The input places of a transition are the places
at the sources of its incoming arcs. Accordingly, a transition’s output places
are located at the end of its outgoing arcs.

The dynamics of the system represented by a Petri net is modelled by
tokens that reside on places. While the structure of Petri nets is fixed, the
tokens may change their position according to firing rules. The current distri-
bution of the tokens among the places determines the state of the Petri net
and, thus, of the system modelled by it.

A transition may fire if it is enabled. A transition is enabled if there is a
token in each of its input places. If the transitions fires, one token is removed

150 4 Process Orchestrations

from each input place and one token is added to each output place. Different
classes of Petri nets exhibit different restrictions on the tokens in a Petri net;
this will be discussed later in this section.

The movement of the tokens in the Petri net according to firing rules is
called token play. The token play is often considered to be a flow of tokens,
although this is not exactly true, since tokens are removed from input places
and added to output places; they do not flow from input places to output
places.

Because transitions can change the state of a Petri net, they are considered
active components, which typically represent events, operations, transforma-
tions, or transportations. A place is a passive component, that stands for a
medium, a buffer, a state, or a condition. Tokens are used to represent physical
objects or information objects. In the context of business processes, transi-
tions represent activities and places containing tokens represent states of the
process instances.

Since Petri nets describe the structure of a system, a Petri net represents
a business process model, and its transitions represent activity models. The
instance level is captured by tokens. This means that the firing of a transition
represents an activity instance. Each process instance is represented by at least
one token; due to split and join nodes, the number of tokens that collectively
characterize one process instance may vary during the lifetime of the process
instance.

Since there can be multiple process instances of one process model, the
tokens in a Petri net may belong to different process instances. This will be
discussed in more detail in Section 4.4, where workflow nets, a Petri net class
specifically tailored towards representing business processes, are discussed.

Fig. 4.26. Sample Petri net representing single process instance

A Petri net characterizing a business process model is shown in Figure 4.26.
The transitions in this Petri net correspond to activities, while the places and
the arcs characterize the execution constraints of the activities. The process
starts when a token is put on place p1. The token is represented by a black
dot in that place. Since there is a token on all input places of the receive order
transition, this transition is enabled, and it can fire.

4.2 Petri Nets 151

Once the receive order transition fires, a token is removed from p1 and
a token is put on p2, representing the execution of the receive order activity
instance. The execution time of this activity instance is not represented; in
Petri nets, transitions fire instantly without consuming time.

After the process order transition has fired, concurrent branches are
opened, since the firing of the process order transition puts tokens on both
p3 and p4, enabling the send books and update inventory transitions. The
complete order transition is enabled only when both of these transitions have
fired. When the process completes there is one token in p7.

To summarize, the Petri net represents the process model, while the to-
kens represent process instances. Since tokens in classical Petri nets cannot
be distinguished from each other, classical Petri nets can only host a single
process instance.

After informally discussing the basic structure of Petri nets and the dy-
namic behaviour of the systems represented, we give a formal definition:

Definition 4.1 A Petri net is a tuple (P, T, F) with

• a finite set P of places,
• a finite set T of transitions such that T ∩ P = ∅, and
• a flow relation F ⊆ (P × T) ∪ (T × P).
• A place p ∈ P is an input place of a transition t ∈ T if and only if there

exists a directed arc from p to t, that is, if and only if (p, t) ∈ F . The set
of input places for a transition t is denoted •t.

• A place p is an output place of a transition t if and only if there exists a
directed arc from t to p, that is, if and only if (t, p) ∈ F . The set of output
places for a transition t is denoted t•.

• p• and •p denote the sets of transitions that share p as input places and
output places, respectively.

�
Graphical representations of Petri nets can be mapped onto a tuple (P, T, F),
and vice versa. For instance, the Petri net shown in Figure 4.26 can be repre-
sented by (P, T, F) such that

• P = {p1, p2, p3, p4, p5, p6, p7},
• T = {t1, t2, t3, t4, t5},
• F = {(p1, t1), (t1, p2), (p2, t2), (t2, p3), (t2, p4), (p3, t3), (p4, t4), (t3, p5),

(t4, p6), (p5, t5), (p6, t5), (t5, p7)}.
The state of the Petri net is characterized by the distribution of tokens on
the places of the net. The dynamic behaviour of a system is represented by
state changes, which are subject to firing rules. As detailed below, there are
different firing rules for different classes of Petri nets.

Definition 4.2 The marking (or state) of a Petri (P, T, F) net is defined by
a function M : P → N mapping the set of places onto the natural numbers,
where N is the set of natural numbers including 0. �

152 4 Process Orchestrations

The marking of a Petri net represents its state. The state of the Petri net
shown in Figure 4.27 is represented by M(p1) = M(p2) = M(p3) = M(p6) =
1 and M(p4) = M(p5) = M(p7) = 0. If the places are totally ordered by their
identifier (as, for instance, in p1, p2, . . . , p7), the marking can be expressed by
an array. In the example, M = [1, 1, 1, 0, 0, 1, 0].

We can also express the state of a Petri net by a list of places that have
exactly one token, that is, a place p is in the list representing marking M , if
M(p) = 1. The marking of the Petri net shown in Figure 4.27 can therefore
also be represented by [p1, p2, p3, p6].

Fig. 4.27. Sample Petri net representing multiple process instances

After having discussed the structure of a Petri net and its state, the dy-
namic behaviour of a Petri net is addressed.

Definition 4.3 Let (P, T, F) be a Petri net and M a marking. The firing of
a transition is represented by a state change of the Petri net.

• M
t→ M ′ indicates that by firing t, the state of the Petri net changes from

M to M ′.
• M → M ′ indicates that there is a transition t such that M

t→ M ′.
• M1

∗→ Mn means that there is a sequence of transitions t1, t2, . . . tn−1 such

that Mi
ti→ Mi+1, for 1 ≤ i < n.

• A state M ′ is reachable from a state M if and only if M
∗→ M ′.

�

Based on these fundamental definitions, a number of Petri net classes are
introduced that differ with respect to their firing behaviour and the structure
of their tokens.

4.2.1 Condition Event Nets

Condition event nets are the fundamental class of Petri nets. In condition event
nets, at each point in time, each place can have at most one token. Tokens are
unstructured; they have no identity and can therefore not be distinguished
from one another. The rationale for the denomination of this Petri net class
is as follows. If a token is on a place p, then the condition p is met. When a

4.2 Petri Nets 153

transition fires, an event occurs and changes the state of the condition event
net.

Definition 4.4 A Petri net (P, T, F) is a condition event net if M(p) ≤ 1 for
all places p ∈ P and for all states M .

• A transition t is enabled in a state M , if and only if M(p) = 1 for all input
places p of t and M(q) = 0 for all output places q of t that are not input
places at the same time.

• The firing of a transition t in a state M results in state M ′, where

(∀p ∈ •t)M ′(p) = M(p)− 1 ∧ (∀p ∈ t•)M ′(p) = M(p) + 1.

�

Since, by definition, M(p) = 1 for all input places p of t and M(q) = 0 for all
output places q of t, it follows for the state M ′ reached by this firing (assuming
output places and input places are disjoint),

(∀p ∈ •t)M ′(p) = 0 ∧ (∀p ∈ t•)M ′(p) = 1.

Fig. 4.28. Firing behaviour of condition event net

Figure 4.28 shows the firing behaviour of condition event nets. Transition
t1 is enabled if and only if all input places have one token and all output places

154 4 Process Orchestrations

have no tokens (a). This means that the conditions represented by the input
places of the transition are met and the conditions reflected by the output
places of the transition are not met.

The firing of t1 withdraws a token from each input place and puts a token
on each output place (b). Transition t1 is not enabled if there is a token in
one of its output places (c) or if not all input places of t1 have a token (d).

Since tokens in condition event nets are un-typed and cannot be distin-
guished from each other, and due to the fact that the number of tokens are
limited to one in each place, condition event nets are not well suited to mod-
elling business processes. The reason for this is discussed in the context of
place transition nets that face the same problem.

4.2.2 Place Transition Nets

Place transition nets are an extension of condition event nets, because in any
state of the Petri net an arbitrary number of tokens can reside in any place.
Therefore, places can, for instance, serve as counters. However, tokens are still
unstructured objects that can not be distinguished from one another.

To account for multiple tokens in each place, transition enabling needs to
be reconsidered. In addition, multiple tokens can be consumed and withdrawn
from an input place when a transition fires, and multiple tokens can be pro-
duced when a transition fires, according to the weights associated with the
arcs connected to the transition. This extension can be represented graphi-
cally by multiple arcs from an input place to a transition or by arcs labelled
with natural numbers marking their weight.

Definition 4.5 (P, T, F, ω) is a place transition net if (P, T, F) is a Petri net
and ω : F → N is a weighting function that assigns a natural number to each
arc, the weight of the arc.

The dynamic behaviour of a place transition net is defined as follows:

• A transition t of a place transition net is enabled, if and only if each input
place p of t contains at least the number of tokens defined as the weight
of the connecting arc, that is, if M(p) ≥ ω((p, t)).

• When a transition t fires, the number of tokens withdrawn from its input
places and the number of tokens added to its output places are determined
by the weights of the respective arcs. From each input place p of t, ω((p, t))
tokens are withdrawn, and ω((t, q)) tokens are added to each output place
q of t.

• The firing of a transition t in a state M results in a state M ′, where

(∀p ∈ •t)M ′(p) = M(p)− ω((p, t)) ∧ (∀p ∈ t•)M ′(p) = M(p) + ω((t, p)).

�

The definition of the marking of a Petri net is still valid for place transition
nets, since we can express, for instance, the fact that there are three tokens

4.2 Petri Nets 155

on a place p by M(p) = 3. The shorthand notation for expressing markings
using lists, however, needs to be refined. We do so by attaching superscripts to
place identifiers that indicate the number of tokens on that particular place.
In the example, the state of a place transition net with three tokens on place
p and one token on place q is expressed by [p3, q1], or simply [p3, q].

Assuming that the Petri net shown in Figure 4.27 is a place transition
net, in addition to t3 (which is also enabled if the Petri net is a condition
event net), the transitions t1 and t2 are enabled. The firing of t1 consumes
the token from p1 and adds a token to p2, so that two tokens reside in p2.
Notice, however, that t5 is not enabled, since p5 does not contain a token. In
the example, each arc has weight one.

While place transition nets allow multiple tokens in each place, they are
still not very useful for representing business processes, since the tokens can-
not be distinguished from each other. The reason for this problem can be
illustrated using the example shown in Figure 4.27, where multiple process
instances are represented in the Petri net by multiple tokens. By closely look-
ing at the Petri net and its token distribution, one can detect which tokens
belong to which process instances.

There are three process instances active. One process instance is repre-
sented by a token in place p1, while the second process instance has already
performed the receive order activity and is therefore represented by the token
in p2. The process order activity spawns two concurrent threads. Therefore,
the tokens in p3 and p6 must belong to the same process instance. When the
send books activity has been completed, a token is put in p5, and the complete
order activity can be performed, completing the third process instance.

While this discussion indicates that an external observer can in some cases
identify the tokens that belong to one process instance, this is not possible in
all cases. Consider Figure 4.29, which describes the same system at some later
point in time when marking [p32, p4, p5, p62] is reached. At this point, the first
and second process instances have both entered the concurrent branches.

Fig. 4.29. Place transition net with multiple process instances

In this case it is far from clear which tokens belong to the specific process
instance. The firing rule of place transition nets defines that the complete
order transition can fire as soon as there is a token in place p5 and a token
in place p6.

156 4 Process Orchestrations

This is a severe problem, because the complete order activity could po-
tentially be conducted for two different process instances! If the first process
instance orders books A and B while the second process instance orders books
C and D, then a situation could occur in which the sending of books A and
B and the update of the inventory for books C and D could be joined, clearly
an unacceptable behaviour.

Therefore, the tokens need to carry values, so that in each state of the Petri
net it is clear which token belong to which process instance. This limitation
of condition event nets and of place transition nets will be lifted by coloured
Petri nets, discussed next.

4.2.3 Coloured Petri Nets

In event condition nets and place transition nets it is impossible to distinguish
tokens from one another. This shortcoming in simple types of Petri nets is
addressed by the colour feature, which allows tokens to have values.

Like variables in programming languages, tokens have typed values. The
data type of a token defines the domain of values and the operations that
are valid on the data. In the context of coloured Petri nets, data types are
also called colour sets, with the understanding that a colour set of a token
represents the set of values that the token can possibly have.

In coloured Petri nets, the enabling of a transition is determined not only
by number of tokens in the input places of the transition, but also by the
values of these tokens. Whether the precondition of a transition is met or
not depends on the presence and values of the tokens to be consumed. This
behaviour is realized by attaching expressions to transitions that are evaluated
to decide whether a transition is enabled.

Similarly, the values of the tokens produced by a transition firing may
depend on values of the tokens consumed. This also means that not all of
the output places receive tokens upon the firing of a transition, realizing a
choice of branches of the net based on the values of the token consumed and
the conditions attached to the transition. The specific firing behaviour of a
transition is specified in the postcondition of the transition.

As a result, the graphical representation of coloured Petri nets is not com-
plete, since expressions that denote preconditions and postconditions, as well
as values of tokens, are not shown.

While there are several variants of coloured Petri nets, the remainder of
this section introduces them as developed by Kurt Jensen. The behaviour
of transitions is guided by tokens in the input places, in guards attached to
transitions, and in expressions attached to arcs, the arc expressions.

Arc expressions are used to determine whether a transition is enabled.
Arc expressions evaluate to multi-sets, where multi-sets can contain multiple
identical elements. These multi-sets determine the tokens removed from the
input places and added to the output places of a transition when it fires.

4.2 Petri Nets 157

Definition 4.6 A coloured Petri net is a tuple (Σ,P, T,A,N,C,G,E, I) such
that

• Σ is a nonempty finite set of types, called colour sets
• P is a finite set of places
• T is a finite set of transitions
• A is a finite set of arc identifiers, such that P ∩ T = P ∩A = T ∩A = ∅
• N : A → (P ×T)∪(T ×P) is a node function that maps each arc identifier

to a pair (start node, end node) of the arc
• C : P → Σ is a colour function that associates each place with a colour

set
• G : T → BooleanExpr is a guard function that maps each transition to a

predicate
• E : A → Expr is an arc expression that evaluates to a multi-set over the

colour set of the place
• I is an initial marking of the coloured Petri net

�

Bindings are used to associate data values to variables, that is, colours to
tokens. For instance, the value “Paula” can be bound to a variable “name.”
In coloured Petri nets, the enabling of a transition depends on a binding.
A transition t is enabled in a binding b if its input places contain tokens
that satisfy the arc expressions under binding b and if in addition, the guard
function of the transition evaluates to true.

If a transition is enabled, it can fire. Depending on the evaluation of the arc
expressions, the respective tokens are removed from the input places. Guided
by the arc expressions of the outgoing edges, the respective tokens are added
to the output places. For a formal treatment of coloured Petri nets, the reader
is referred to the bibliographical notes at the end of this chapter.

To illustrate coloured Petri nets, we provide an example. Figure 4.30 shows
a coloured Petri net of a business process for credit request approval. This
example illustrates the definition of the static and dynamic aspects of coloured
Petri nets.

The coloured Petri net has associated a colour set consisting of [Customer,
Amount] pairs of values, where Customer is a string and Amount is an integer
value. Coloured tokens represent specific [Customer, Amount] value pairs.

Initially, there are three tokens in the Credit Request place p1, representing
the credit requests by Paula, Mary, and Peter and their respective credit
amounts. The AssessRisk transition is enabled, because there is a token in
its input place and there is no additional guard function associated with that
transition.

The AssessRisk transition is enabled under binding c = Paula, a = 15000,
because there is a token [Paula,15000] at p1 that satisfies the arc expression.
Since there is no additional guard expression associated with that transition,
it is enabled, and it can fire.

158 4 Process Orchestrations

Fig. 4.30. Sample coloured Petri net

When it fires, the AssessRisk transition decides on which of its output
places a token should be put. This behaviour of the coloured Petri net is due
to the arc expressions associated with the outgoing edges of the transition.
When the transition fires, the arc expressions of both outgoing edges are
evaluated. Since the requested amount is below 20000, only the arc expression
if a <=20000 (c,a) is evaluated to true, so that a token is put on p3, and no
token is put on p2.

When the SimpleRiskAssessment transition fires, a token is put on p4.
The token also includes a value assessing the risk of the credit requested,
indicated by the arc expression (c, a, r), where r stands for a variable that
carries the assessed risk. Assuming there are two risk levels—represented by
values l for low and h for high—and Paula gets a low risk assessment, the
token [Paula, 15000, l] is put on p4.

Depending on the first letter of the credit requester’s name, the respective
inform customer transition is enabled. This decision is ruled by guard func-
tions, which are represented by functions placed on top of transitions. In the
example, the BeginsWith(name, interval) returns true if and only if name
begins with a letter in interval. Since the token for Paula is in p4, the tran-
sition Inform Customer I-Z is enabled. After the customer is informed, the
process completes.

To summarize, the behaviour of a transition in a coloured Petri net is
defined by a guard function, by the tokens that reside in its input places, and
by arc expressions. Hence, transition firing in coloured Petri nets exhibits a
complex and highly customizable behaviour.

Therefore, it is valid to say that each transition in a coloured Petri net
has its own transition behaviour, which provides a high expressive power for
this class of Petri nets. At the same time, the graphical representation is no
longer sufficient to capture and understand the semantics of the Petri net.

When a transition fires, any number of tokens with any values can be put
on the output places of the transition, determined by arc expressions. Because

4.3 Event-driven Process Chains 159

coloured Petri nets provide this expressive power and can handle data as well,
they are well suited to representing business process models. They form the
basis for workflow nets that will be discussed in Section 4.4.

4.3 Event-driven Process Chains

Event-driven process chains are an important notation to model the domain
aspects of business processes. The main focus of this rather informal notation
is on representing domain concepts and processes rather than their formal
aspects or their technical realization. Event-driven process chains are part
of a holistic modelling approach, called the ARIS framework; ARIS stands
for Architecture of Integrated Information Systems, and it was developed by
August-Wilhelm Scheer.

This approach is often denoted as the ARIS house with three pillars and
a roof, as shown in Figure 4.31. The pillars reflect data, control and function,
while the roof reflects the overall organization. In each area, three levels of
abstraction are identified: a concept level, an architecture level, and an imple-
mentation level, characterized by the terms Requirements Definition, Design
Specification, and Implementation Description, respectively.

The concept level is the highest level of abstraction in which data, control
and function are modelled. This level looks at nontechnical requirements of
business processes and their execution environment. Business goals and func-
tions are typical artefacts in the function view at this level. The data view is
expressed by data modelling techniques using Entity Relationship diagrams.

In the control view, business processes are described by event-driven pro-
cess chains, which are also used to integrate the different views. The orga-
nizational view at the concept level deals with the organizational structures
of a company, described by organizational diagrams. The architecture level is
the intermediate level, and it aims at bridging the gap between the concept
level and the implementation level. At the implementation level, steps towards
concrete realization of the business process are addressed.

This framework is specified by a set of metamodels that describe various
views, similar to the business process perspectives introduced in Chapter 3.
The main views are as follows.

• Functional View : The functional view represents the goals and subgoals of
the enterprise and their relationships. In general, one subgoal might con-
tribute to a number of goals at the higher level. For instance, the subgoal
“reduce business process execution time” contributes to the goals “increase
customer satisfaction” and “reduce overall cost.”
At a lower level of abstraction, each subgoal is associated with a set of
functions that contribute to goals and subgoals. Functions are then hierar-
chically decomposed until the desired granularity of functions is achieved,
similarly to functional decomposition in value chains.

160 4 Process Orchestrations

Fig. 4.31. ARIS business process framework, Scheer (2000)

• Organizational View : The organizational view describes the organizational
structure of an enterprise at a type level and at an instance level. There
are detailed specifications of organizational entities, including their rela-
tionships and positions, roles, skills, and individuals associated with them.
Administration information such as the address of an organizational entity
can be represented. The organizational view also includes organizational
aspects of information technology of the enterprise, including its main
operational information systems, its storage facilities, and its network in-
frastructure.

• Data View : The data view characterizes business relevant data objects that
are manipulated by functions during business process execution. Entity
Relationship diagrams are used for data modelling.

• Business Value View or Output View : The business value view describes
the outcome of business processes, that is, the products and services the
enterprise generates. These can be physical goods like automobiles or elec-
tronic devices, as well as intangible goods, such as a processed order or a
flight booking.

These views are integrated in a control view. This control view provides link-
age between the artefacts in the different views. Functions, for instance, are
associated with the organizations that are responsible for conducting these
functions. Analogously, data and business value artefacts are associated with

4.3 Event-driven Process Chains 161

functions, data, and organization, providing an integrated view of the business
processes of an enterprise.

Fig. 4.32. Building blocks of event-driven process chains

Process modelling uses event-driven process chains. The main building
blocks of event-driven process chains are events, functions, connectors, and
control flow edges, as shown in Figure 4.32.

The entering of a business-relevant state is represented by an event in an
event-driven process chain. Examples of events are the receipt of an order, the
completion of processing an order, and the completion of shipping a product.

In event-driven process chains, events are represented by hexagons. Events
are marked by a string, often of the type order is received, indicating a business
relevant object (order) and the state change that has occurred to this object
(is received). Events are passive elements in the sense that they do not provide
decisions.

Functions represent units of work. The granularity of these functions de-
pends on the modelling purpose. In general, functions in event-driven process
chains are at a rather low level of granularity; their contribution to functions
at higher levels of granularity or to business goals is specified in the functional
view.

Unlike events, functions are active elements that take input and transform
it to output. Input and output can be information products or physical prod-
ucts. Functions can also make decisions that influence the behaviour of the
process through connector nodes associated with the function. Functions are
triggered by events, and on the completion of a function, an event occurs. In
event-driven process chains, functions are represented by rounded rectangles.

162 4 Process Orchestrations

Connectors are used to model causal ordering relations, that is, to repre-
sent the process logic. There are three types of connectors, for logical and, or,
and exclusive or (xor). These connectors serve both as split nodes and as join
nodes. Depending on the number of incoming edges, it can be determined if
a connector is a split connector or a join connector.

It is also possible that connectors serve at the same time as split connector
and join connector. In case split and join realize the same semantics (for
instance, both have and semantics), a connector with an and symbol suffices.
In case the split and join have different semantics, the connector can be divided
into an upper and a lower part, each of which holds a notational symbol. An
example of a combined connector is shown in Figure 4.32, where the upper part
shows an and join and the lower part shows an or split. Other combinations
are also possible. Edges are used to provide the glue between events, functions,
and connectors.

Event-driven process chains are defined as follows.

Definition 4.7 A tuple A = (E,F, V,m,C) is an event-driven process chain,
if

• E is a nonempty set of events
• F is a nonempty set of functions
• V is a set of connectors
• m : V �→ {and, or, xor} is a mapping that assigns to each connector a

connector type, representing and, or, and exclusive or semantics.
• Let K = E ∪ F ∪ V . C ⊆ K × K is a set of edges connecting events,

functions, and connectors such that the following conditions hold:
– (K,C) is a connected graph
– Each function has exactly one incoming edge and exactly one outgoing

edge.
– There is at least one start event and at least one end event. Each start

event has exactly one outgoing edge and no incoming edge. Each end
event has exactly one incoming edge and no outgoing edge. There is at
least one start event and one end event. All other events have exactly
one incoming edge and one outgoing edge.

– Each event can only be followed (possibly via connectors) by functions,
and each function can only be followed (possibly via connectors) by
events.

– There is no cycle in an event-driven process chain that consists of
connectors only.

– No event is followed by a decision node, that is, an or split node or an
exclusive or split node.

�

The definition of event-driven process chains is illustrated by Figures 4.33
and 4.34. Figure 4.33 shows how connectors can link multiple events to one
function. The figure uses two events per function, but any number of events

4.3 Event-driven Process Chains 163

is possible. In the upper part of Figure 4.33, the occurrence of events triggers
a function.

Depending on the connector used, the occurrence of one event (exclusive
or join connector), the occurrence of two events (and join connector), or the
occurrence of any nonempty subset of events (or join connector) triggers a
function F . There is no surprise with respect to the semantics of the connec-
tors: an exclusive or connector triggers F after either E1 or E2 has occurred;
for the and connector to trigger the function, both events must occur, and
the or connector triggers F after any nonempty subset of events E1 and E2
has occurred.

Fig. 4.33. Syntax rules on event-driven process chains: multiple events, single func-
tion

In the lower part of Figure 4.33, a connector links a function F to multiple
events. The execution semantics of the split connectors follows the traditional
way: an exclusive or split connector represents the business logic that after F ,
either event E1 or event E2 occurs. The decision about which event actually
occurs during a particular process instance is made by function F . Analogous
considerations hold for the or split connector, where any nonempty subset of
events {E1, E2} can occur after F . The and split connector determines that
after function F , both events E1 and E2 occur.

Figure 4.34 shows how one event can be linked to multiple functions. In
event-driven process chains, events are passive elements that occur—events
are not active entities that can make decisions. Therefore, any combination of

164 4 Process Orchestrations

one event followed by a decision involving multiple functions is disallowed, as
shown in Figure 4.34.

Fig. 4.34. Syntax rules on event-driven process chains: multiple functions, single
event

Notice that an event can precede an and split connector, since all branches
are taken, so that no decision needs to be made by the event. In the lower
part of Figure 4.34, the occurrence of functions triggers the occurrence of an
event. The termination of one function in {F1, F2} triggers event E1 via an
exclusive or join connector; the cases for the and join connector and the or
join connector can also be seen in that figure.

Having defined event-driven process chains and their structural con-
straints, we illustrate the definitions with an example. The following process
is represented by an event-driven process chain in Figure 4.35.

The process starts with the receipt of a customer order. This receipt of
a customer order realizes a state change of the enterprise that is relevant for
the business process. Therefore, it is represented by an event. Event-driven
process chains start with events (never with functions), since a function is
always a consequence of an event and cannot therefore be performed without
the state change represented by the event.

When an order is received, it is analyzed and either accepted or rejected.
When it is accepted, the stock is checked for availability of the ordered prod-
ucts. If all products are in stock, then the products are shipped and the bill
is sent. In case there are additional bills open, the payment will need to in-
clude these open bills. The other parts of the event-driven process chains deal
with the manufacturing of products if the ordered products are not in stock.

4.3 Event-driven Process Chains 165

Fig. 4.35. Example event-driven process chain

While most constructs of event-driven process chains can be explained in this
example, the process is a severe simplification of real-world ordering processes.

While the process aspect in terms of the functions and events that occur in
business processes is well captured by event-driven process chains, there are
other types of diagrams that abstract from the relatively fine-granular level
of event-driven process chains.

166 4 Process Orchestrations

Interaction flow diagrams provide a high-level view on the organizational
entities that participate in a business process, as well as their interactions.
An interaction flow diagram is a directed graph, whose nodes correspond to
organizational entities and whose edges represent interactions between the
organizations. An interaction flow diagram of the event-driven process chain
discussed above is shown in Figure 4.36.

Fig. 4.36. Sample interaction flow diagram, adapted from Scheer et al. (2005)

The interaction flow diagram shown describes at a high level of abstraction
a business process in which a customer sends an order to the marketing and
sales department, which triggers the purchase of raw material, before opera-
tions manufactures the products and finally ships them to the customer, who
pays for ordered products.

While the overall interactions are properly represented in interaction flow
diagrams, the ordering in which these interactions actually occur is not in the
scope of interaction flow diagrams. For instance, the two interactions between
customer and sales are not ordered in the diagram.

However, the reader of an interaction diagram might be able to deduce
the ordering of interactions by common sense. For instance, placing an order
is done before paying for the ordered item. The diagram itself abstracts from
these ordering relationships and, therefore, provides an abstract, high-level
representation of the organizational entities involved in a business process
and their relationships through interactions.

Function flow diagrams are a refinement of interaction flow diagrams in
the sense that they (i) represent the ordering of interactions and (ii) provide
coarse-grained functions for representing these interactions. Figure 4.37 shows
the mapping of an interaction flow between the customer and the marketing
and sales department to a function flow. The latter includes functions and
an ordering relationship between these functions, indicating that the entering
of the order precedes the processing of the order by the marketing and sales
department.

4.3 Event-driven Process Chains 167

Fig. 4.37. Mapping interactions to relationships between functions

The complete picture of function flow in this example is shown in Fig-
ure 4.38. In addition to the functions and their ordering, split and join nodes
are introduced. Function flow diagrams provide information on the coarse
grained functions involved in a business process, as well as the organizational
entities that perform them. In addition, the ordering of these functions is also
represented in function flow diagrams.

In the sample function flow diagram it is clarified that planning the manu-
facturing and purchasing of material are performed concurrently, but the item
is only manufactured after the supplier has processed the order and manu-
facturing has received the material. The function flow diagram also models
the fact that payment of the received material is performed concurrently to
manufacturing the item.

To summarize, function flow diagrams provide high-level information on
the functions in a business process and on the organizational entities that per-
form them and their ordering. Events of the business process are not covered
by function flow diagrams.

Additional views are represented by enhancing event-driven process chains
with notational symbols for data involved as well as for process paths and
process groups. Data and material are represented by rectangles, associated
with functions by solid arrows. The direction of the arrows indicates whether
the data is used for input or output (or both). Process groups hold a collection
of processes, and process paths indicate where the process continues.

A part of an extended event-driven process chain is shown in Figure 4.39.
This part consists of a single function to analyze an order and its environment.
When the order arrives, the function is triggered, represented by the respective
event. In order to check the order, the order document and the stock status
are used as input data.

We assume the function is performed by the operations department. When
the function completes, the result is recorded in the check result data object.
The function is also responsible for creating the respective event: either the

168 4 Process Orchestrations

Fig. 4.38. Sample function flow

products are in stock or the products are not in stock and need to be manu-
factured.

Fig. 4.39. Example of extended event-driven process chain

4.4 Workflow Nets 169

Event-driven process chains allow us to model business processes from a
business perspective. The explicit representation of the occurrence of relevant
situations by events and the bipartite structure, in which events and functions
alternate, lead to verbose and often actually quite complex process represen-
tations.

Due to their semiformal nature, business engineers and process designers
enjoy a fair degree of freedom when expressing business processes. When it
comes to implemented business processes, process designers and systems en-
gineers need to make explicit what was intended by the event-driven process
chain.

The or join is an important control flow construct in event-driven process
chains, which is used quite often, because it allows us to represent any type of
join behaviour. We have already discussed the problematic semantics of the
or join in Section 4.1. Due to the nonlocal semantics, the decision on when
the join needs to be performed cannot be taken without nonlocal knowledge.

Since event-driven process chains are primarily used to model business
processes at a business level, typically humans interpret event-driven process
chains. Since humans, when assessing an event-driven process chain, have
nonlocal knowledge, the semantics of the or join is clear to them.

The problems start when an event-driven process chain needs to be trans-
lated into an executable format, for instance, to serve as input for a workflow
management system to control the enactment of business processes. There are
approaches in handling the or join semantics, based on global state transition
systems; for details, the reader is referred to the bibliographical notes.

Section 6.5 introduces a technique to translate event-driven process chains
to workflow nets; this technique facilitates the evaluation of properties of
event-driven process chains with respect to deadlocks and proper termination
of the business processes represented.

4.4 Workflow Nets

Event-driven process chains provide an informal notation for representing
business processes and their environment. To precisely specify and reason
about business processes, more formal approaches need to be investigated,
such as, Petri nets.

While Petri nets are very useful for representing simple types of processes,
complex processes such as business processes require advanced modelling
mechanisms. In particular, tokens need to carry information at least about
the process instance they belong to.

Workflow nets are an approach to enhance traditional Petri nets with
concepts and notations that ease the representation of business processes.
At the same time, workflow nets introduce structural restrictions that prove
useful for business processes.

The reasons for using Petri nets in general and workflow nets in particular
for business process modelling are as follows.

170 4 Process Orchestrations

• Formal Semantics: Business processes can be defined in a formal manner.
This observation holds in particular for the control flow aspect of Petri
nets.

• Graphical Representation: Activities in a business process and their ex-
ecution constraints are expressed graphically in a Petri net, which eases
communication about business processes with the different stakeholders
involved (although some stakeholders prefer semiformal techniques like
event-driven process chains).

• Analysis of Process Properties: The formal semantics of business processes
expressed in Petri nets allows for the analysis of process properties.

• Tool Independence: Although several business process management tools
are based on Petri nets, the formalism itself is vendor independent.

4.4.1 Definitions

The main concepts in workflow nets are illustrated in Figure 4.40. Like Petri
nets, workflow nets focus on the control flow behaviour of a process. Places
represent conditions and tokens represent process instances. Activities of a
business process are represented by transitions in the workflow net.

Fig. 4.40. Sample workflow net

Because tokens represent business process instances, tokens hold appli-
cation data including process instance identifiers, that is, the tokens are
coloured. However, in workflow nets, the colouring of tokens is not represented
explicitly, as will be discussed in more detail below.

Workflow nets can be hierarchically structured. In the sample workflow net
shown in Figure 4.40, there is a complex business process activity represented
by a transition with a double border. The internal structure of a complex
activity is realized by another dedicated workflow net. Hierarchical structuring
of workflow nets is not investigated in detail; in the context of the YAWL
process language, hierarchical structuring is investigated.

Based on these considerations, workflow nets can be defined as Petri nets
with specific structural restrictions.

4.4 Workflow Nets 171

Definition 4.8 A Petri net PN = (P, T, F) is called workflow net if and only
if the following conditions hold.

• There is a distinguished place i ∈ P (called initial place) that has no
incoming edge, that is, •i = ∅.

• There is a distinguished place o ∈ P (called final place) that has no out-
going edge, that is, o• = ∅.

• Every place and every transition is located on a path from the initial place
to the final place.

�

The rationale of this definition is as follows: a token in the initial place i
represents a process instance that has not yet started; a token in place o
represents a finished process instance. Each place and each transition in a
workflow net can participate in a process instance; therefore, each place and
each transition needs to be located on a path from i to o.

As a consequence of these structural properties of workflow nets, the initial
place i is the only place without incoming edges, and the final place is the
only place without any outgoing edges.

If there was another place i′ �= i ∈ P without incoming edges, then i′ could
not be located on a path from i to o, contradicting the definition of workflow
nets. And if there was a place o′ �= o ∈ P without outgoing edges, then o′

could not be on a path from i to o. Therefore, places with the properties of i′

and o′ cannot exist in workflow nets.
A sample workflow net is shown in Figure 4.41. It represents a simple

claim management process in which, initially, the claim is recorded and, con-
currently, a witness report is created and the client status is checked. After
the results have been gathered, an assessment of the claim is performed. In
the case of a positive assessment, the damage is compensated. In the case of
a negative assessment, the claim is rejected. Finally the claim is filed and the
process completes.

4.4.2 Control Flow in Workflow Nets

The ability to represent control flow structures in workflow nets is investigated.
As with any other process modelling language, the sequence pattern can easily
be expressed in workflow nets. In Figure 4.42, the sequential execution of A
and B is realized by a place p and the associated arcs. As indicated above,
the execution of a business process activity is represented by the firing of a
transition.

The firing rule of Petri nets makes sure that A puts a token on p only
after its termination. Hence, B is enabled only after there is a token in p.
Since only enabled transitions can fire, we have the following sequence of
events: A fires and puts a token in p enabling B, which can now start its

172 4 Process Orchestrations

Fig. 4.41. Sample workflow net

execution. Therefore, by transitivity of the ordering relation, B can only start
after A has terminated.

Observe that colouring information is not regarded when discussing control
flow in workflow nets. For the sequence pattern, the colouring of the tokens
can be disregarded. However, if transitions need to make decisions when they
fire, the colouring of the tokens needs to be taken into account; this will be
discussed in more detail below.

Fig. 4.42. Sequence pattern in workflow net

And split and and join control flow constructs can also be expressed in
workflow nets conveniently. Again, standard Petri net firing behaviour suffices.
Figure 4.43 shows a workflow net in which there is a transition A that puts
tokens in its output places p1 and p2, enabling B and C, respectively. As
a result, transition A realizes an and split. After B and C have terminated,
there are tokens in p3 and p4, enabling the and join transition D.

The exclusive or split and exclusive or join patterns can also be expressed
in standard Petri nets. As shown in Figure 4.44, an exclusive or split can be
realized by a place with multiple outgoing edges leading to multiple transi-
tions. These transitions are enabled at the same time. This type of exclusive
or split is called implicit exclusive split, because its behaviour depends on the
behaviour of the transitions involved, in this case, A and B.

Although both transitions are enabled—in the example, A and B—only
one transition can fire, withdrawing the token from p1 and adding a token

4.4 Workflow Nets 173

Fig. 4.43. And split and and join patterns in workflow nets

to p2. The exclusive or join is realized by a place that receives a token from
either A or B.

Fig. 4.44. Implicit exclusive or split also known as deferred choice

In the scenario shown in Figure 4.44, the transitions involved decide by
their firing behaviour about the branch of the workflow net that the process
instance takes. Since the decision is deferred to the latest point in time, this
pattern is also called deferred choice.

There is a second type of exclusive or split in workflow nets, in which the
decision on which path to take is made explicitly by a transition. This feature
takes advantage of coloured Petri nets, in which transitions can implement
decision rules, which are evaluated at run time to decide which of its output
places to put tokens on.

This also means that the behaviour of classical Petri nets is no longer valid
for workflow nets. As a consequence, as in coloured Petri nets, the graphical
representation of the workflow net does not fully specify the behaviour of the
process instance controlled by the workflow net.

The workflow net shown in Figure 4.45 illustrates these observations. Tran-
sition A implements a decision rule by associating conditions with each of its
outgoing edges. An exclusive or semantics of this decision can be realized in
different ways (workflow nets do not prescribe any of them).

The first way to realize an exclusive or semantics is to make sure that
the conditions are chosen in a way that always one and only one condition
evaluates to true. The second way is to evaluate conditions of outgoing edges

174 4 Process Orchestrations

in order. As soon as one condition evaluates to true, the respective edge is
chosen, and the token is put on the respective place.

The problem with this strategy is that there might be situations in which
no condition evaluates to true. If no additional measures are taken, then the
case gets stuck at this point. This problem can be tackled by defining a de-
fault branch which is taken if none of the (expressions of the) other branches
evaluates to true.

Fig. 4.45. Decision rule based split, can realize or split, exclusive or split, and and
split

To express the particular split and join behaviour of transitions in work-
flow nets, the transitions are labelled with specific symbols. This labelling of
transitions is called syntactic sugaring; it is shown in Figure 4.46.

It is the responsibility of the modeller of the workflow net to make sure
that the decisions associated with the transitions match their symbols. The
and split and and join markers indicate that the traditional Petri net firing
behaviour of transitions is in place. If a transition is marked with an and
split symbol, the reader of the workflow net knows that the transition puts a
token on all its output places, while the xor split marker models an exclusive
decision when the transition fires.

Workflow nets represent business processes, focusing on activities and their
execution constraints. To enhance the representation of business processes
and to provide a means to represent in more detail the environment in which
these processes are enacted, triggers have been introduced. In the context of
workflow nets, triggers are annotations to transitions that provide information
on who or what is responsible for an enabled transition to fire.

Situations in real-world business processes that can be represented by trig-
gers are the receipt of an electronic message or a time-out of a timer to remind
an employee of an upcoming deadline. Generally, a business process manage-
ment system is a reactive system. It reacts to events in its environment by

4.4 Workflow Nets 175

Fig. 4.46. Syntactic sugaring of transitions in workflow nets

enabling an activity. Triggers play an important role in informing the system
about events in the process environment that are relevant for the process.

Figure 4.47 shows the types of triggers used in workflow nets. Transitions
that can fire immediately after they have been enabled are not marked with a
trigger; triggering is therefore automatic. For example, automatic triggers are
used for transitions that are realized by invoking a software system, where no
user interaction is required.

A user trigger is attached to transitions that require human interaction.
By marking a transition with a user trigger, the process modeller expresses the
fact that a human user takes the initiative to start the activity represented by
the transition. This trigger is relevant in human interaction workflows, where
work items are used to communicate with human users.

A work item list of a particular user contains items, each of which rep-
resents an activity (more precisely, an activity instance) that is enabled and
that can be executed by that user. Whenever a transition with a user trigger
enters the enabled state, a work item representing this activity is sent to the
work item lists of the users who can perform it. Role information is used to
determine the knowledge workers. When a user selects a particular work item,
the activity is started and the work items reflecting it can be deleted from the
work item list.

Modelling organizational aspects like users or roles is not supported by
workflow nets. A transition marked with a user trigger indicates that the
activity represented by that transition requires a human to start it. Organi-
zational aspects need to be covered by tools that employ workflow nets for
process modelling and other techniques for modelling organizations. The same
applies for representing data, which is also not covered by workflow nets.

An external trigger is the main instrument for reacting to external events
like an incoming message. When the transition that carries an external trigger

176 4 Process Orchestrations

Fig. 4.47. Triggers in workflow nets

enters the enabled state, it listens for this event. When the event occurs, for
instance, when an order arrives, the transition fires and the activity starts
execution.

Time triggers are used to specify situations where the start of an activity
depends on temporal aspects. Time triggers can be assigned a time-out value.
The timer is started when the transition enters the enabled state. When the
timer runs out, the enabled transition fires. If the transition is no longer
enabled, the timer is stopped.

Figure 4.48 shows a workflow net with a typical usage of triggers. In this
process, a request is sent, represented by the Send Request transition. The
workflow net implements an implicit exclusive or split that concurrently en-
ables (transitions that represent) activities to collect the response to the re-
quest and to send a reminder.

The Collect Response activity is marked by an external trigger, so that
it is started once the response comes in. A reminder should be sent if after
a defined time interval, for instance, 14 days, no response is received. This
business logic can be implemented in a workflow net by attaching a timer
trigger to the Send Reminder transition.

The timer is started when the transition enters the enabled state, that is,
after the request is sent. If the response is received within the timer interval,
then the Collect Response transition fires. In this case, the Send Reminder
transition is no longer enabled, so that the timer can be stopped.

Triggers can also illustrate very well the difference between an explicit
exclusive or split and an implicit exclusive or split, as shown in Figure 4.49.
In an explicit exclusive or split (a), the decision on which branch to activate
is made by a decision transition, so that either transition A or transition B
is enabled. In this setting, the desired functionality is not realized, because if

4.4 Workflow Nets 177

Fig. 4.48. Sample workflow net with external trigger and time trigger

A is enabled, the timer will not be started, and if B is activated, there is no
way for the user to start working on activity A.

The desired functionality is provided if both transitions are enabled con-
currently, as shown in part (b) of Figure 4.49. The timer is started, and the
user trigger is available. If the user starts the activity on time, that is, be-
fore the timer expires, then the timer is stopped. If the user fails to start the
activity on time, activity B is started to cater to this situation.

Fig. 4.49. Sample workflow nets illustrate the difference between explicit xor split
(a) and implicit xor split (b)

Trigger activities can formally be represented by places with an arc to the
respective transition. For instance, a user trigger of a transition A is repre-
sented by a place p such that p ∈ P and (p,A) ∈ F , as shown in Figure 4.50.
The behaviour of the user is represented as follows. If and when the user se-
lects this activity, a token is put in place p, enabling transition A. In this case,
A can fire, representing the execution of that activity.

While the behaviour of the user trigger is specified well using the additional
place and the additional arc, there is an issue to cope with: the Petri net
resulting from expanding the user trigger by a place and an arc is no longer a
Workflow net! This is due to the fact that p is not on a path from the initial
place i to the final place o. In the context of business processes involving

178 4 Process Orchestrations

Fig. 4.50. Representation of triggers

multiple parties, however, these trigger places are very useful to interconnect
the processes involved.

While workflow nets have been primarily developed to represent business
processes within organizations, workflow nets can also be used for processes
spanning multiple organizions, as shown in Figure 4.51. The diagram shows
a business process involving a customer and a bookstore, and it contains
activities for the ordering of books by the customer and the processing of the
order by the bookstore.

All activities in this scenario are represented by transitions of one workflow
net. In order to satisfy the structural properties of workflow nets, the process
starts in the initial place i at the customer, and it ends in the final place o at
the customer. Later, in the context of business process choreographies, more
elaborate techniques will be introduced that separate an externally observable
behaviour of a business process from its internal realization. However, in the
current example, the workflow spans multiple parties.

The process starts with the customer browsing the online catalogue of a
bookstore and selecting books. If books are found, an order is assembled and
sent, represented by the send order transition. This transition spawns off two
concurrent threads, as shown by the and split symbol.

In one thread, the message is sent to the bookstore. The sending of the
order is represented by a token in the input place of the receive order tran-
sition. When the order is received in the bookstore, the order is processed.
If the order is okay, the books are sent; otherwise, a message is sent to the
customer that informs him that not all books are available.

This means that the bookstore sends one of two possible messages for each
case. On the customer side, this situation is handled by an implicit exclusive
or split. In this split, two transitions can be enabled at the same time. If the
bookstore sends the books, the receive books transition of the customer is
enabled and will fire.

4.4 Workflow Nets 179

Fig. 4.51. Sample workflow net involving multiple parties

If, on the other hand, the message is sent, the respective transition on
the customer side is enabled. Observe that the alternative branches in the
bookstore need to be joined, and the join transition is connected to the cus-
tomer side. This is required in workflow nets, because otherwise there would
be places in the workflow net (send books and send not available) that are not
on a path from the initial place to the final place.

4.4.3 Representing Process Instances

Workflow nets cover the model level in process modelling and—by tokens—
the process instance level as well. This means that for each business process
model represented by a workflow net there can be multiple process instances
following this model. Each process instance is represented by a set of tokens
in the workflow net.

A sample workflow net with a set of tokens belonging to different process
instances is shown in Figure 4.52. The workflow net represents a business pro-
cess in which claims are processed; the details of this process are not relevant
to introducing how process instances are represented in workflow nets. The
tokens are coloured; they contain values. If we abstract from any application

180 4 Process Orchestrations

Fig. 4.52. Sample workflow net with coloured tokens representing process instances

data that might be represented by tokens, each token carries at least a process
instance identifier.

The workflow net shown in Figure 4.52 holds tokens that represent a set
of cases that are concurrently executed. Case 5 has a token is in the initial
place; the case is not yet started. Case 4 is reflected by two tokens, because it
is currently on a parallel branch of the net. The same holds for Case 3, but for
Case 3, the GetWitnessReport transition has already been conducted. Case 2
has already completed the parallel branch, so that the two parallel branches
have already been joined, and the two tokens of Case 2 have been merged into
a single token, as shown in Figure 4.52.

4.4.4 Discussion

Workflow nets are a well-known technique to model business processes in an
abstract and formal way. In order to provide a formal background, especially
in the context of soundness properties which will be investigated in Chap-
ter 6, several restrictions were introduced. Without these restrictions, formal
analysis of workflow nets would not be feasible.

Data and Conditions

Data is not explicitly represented in workflow nets. Data is only handled in
an abstract way, by denoting that tokens can be coloured, but the usage of
these data structures in the process is not investigated.

While the workflow net represents the structure of a set of similar process
instances (that is, the process model), the individual cases are represented
by tokens. Each case is represented by at least one token. In general, when
the case starts, there is one token in the source place i, and when the case
completes, there is one token in the sink place o.

4.4 Workflow Nets 181

The workflow management system that controls the enactment of cases
requires differentiating between the tokens that belong to different cases. A
transition t with incoming edges from places p and p′ realizes an and join.
This means that t can only be enabled when there are tokens in p and p′, and
these tokens need to belong to the same case.

Therefore, tokens need to be typed. Tokens need (at least) to include a
process instance identifier, so that t can synchronize the branches represented
by p and p′ only, if these places have tokens that belong to the same case. As
a simplification often made in the context of workflow nets, each workflow net
contains tokens that belong to a single case. In this case, the tokens do not
need to be typed.

Decision transitions that realize or splits and exclusive or splits require
expressions that are evaluated for each process instance to decide which branch
to take. These decision expressions are also disregarded in workflow nets.

Decisions are abstracted from in the following way: wherever there is a
decision transition, each of the alternative branches will be taken eventually.
This assumption mirrors the non-determination of firing in traditional Petri
nets: multiple enabled transitions that share a common input place will fire
in a non deterministic fashion.

The same assumption is now in place for decision nodes in workflow nets:
each expression in a decision transition will eventually evaluate to true. When
analyzing workflow nets, this assumption is in place to detect structural errors
in workflow nets. Errors that result from erroneous conditions associated with
decision transitions, however, are not considered.

Temporal Aspects

Activities in workflow nets are represented by transitions. When a transi-
tion fires, it withdraws tokens from its input places and puts tokens in its
output places, depending on the decision made by the transition. These steps
(withdrawing tokens, determining where to put tokens, and finally putting the
tokens) in Petri nets are represented by the firing of the transition, which does
not consume time. This assumption is in contradiction with activity instances,
which do take time. The processing of an insurance claim, the preparation of
a quote, and the checking of a warehouse inventory are activities that take
time.

The fact that activities take time is also reflected by the state transition di-
agram of activities. In state transition diagrams, state transitions are triggered
by events. For instance, the completion of an enter customer order activity
enables a check inventory activity. This means that activity instances have
lifecycles that consist of a number of steps, from their instantiation, their en-
abling, and their execution to their termination. In workflow nets, these steps
are not represented, because firing puts an activity from the enabled state
immediately into the terminated state.

182 4 Process Orchestrations

This contradiction is partly solved in workflow management systems using
Petri nets. Assume that a business activity represented by a transition is
realized by invoking a piece of software. The invocation of the software is
often represented by the firing of the transition. However, software procedures
also take time. In addition, the follow-up activities should not be enabled
when the previous activity is started, but when it completes. If an activity is
implemented in software, then the follow-up activities should not be enabled
when the software is invoked, but after it has completed.

The timeliness of activity instances represented by workflow nets also im-
plies that no events can occur during an activity instance. In real-world busi-
ness processes, however, this is not true. Many things do happen during the
execution of a business process activity. For instance, while an inventory is be-
ing checked, new items may enter the warehouse. These issues are not covered
by workflow nets; it is the responsibility of business process management tools
to solve issues that might result from these abstractions in workflow nets.

4.5 Yet Another Workflow Language

The motivation for the development of Yet Another Workflow Language
(YAWL) was the lack of a process language that directly supported all control
flow patterns. While it uses workflow nets as a major ingredient, the execution
semantics of process instances is specified by state transition systems and not
by Petri nets. In this section, YAWL and its support for control flow patterns,
as well as its execution semantics, are investigated.

While Petri nets provide a sound formalism for expressing most control
flow patterns, the following deficiencies have been identified that hamper the
expression of the full set of control flow patterns.

• Multiple Instances: Multiple instances patterns describe business processes
with multiple instances of specific activities. The number of activity in-
stances of one particular activity model might not be known at design time.
Petri nets do not provide adequate means to describe multiple instances
tasks.

• Advanced Synchronization Patterns: Petri nets can directly express and
split/join and exclusive or split/join using places, transitions and firing
rules of traditional Petri nets. Advanced synchronization patterns such as,
for instance, or split and or join and discriminator patterns, however,
cannot be conveniently expressed in Petri nets.

• Nonlocal Firing Behaviour : The enabling of activities in a business process
is based on local knowledge only. In the context of Petri nets, the presence
of tokens in the input places of a transition indicates activation of that
transition. In business processes, there are situations in which nonlocal
parts of the process are affected by a decision. For instance, the cancellation
pattern somehow vacuum-cleans defined parts of the Petri net when being

4.5 Yet Another Workflow Language 183

activated. If used to cancel a customer order, different activities in different
parts of the Petri net need to be cancelled in order to cancel the overall
customer order.

4.5.1 Definitions

Notation wise, YAWL is based on a variant of workflow nets, called YAWL
nets, which are building blocks for YAWL specifications. YAWL nets enhance
traditional workflow nets with direct arcs between transitions, explicit split
and join behaviour that can be attached to transitions, nonlocal behaviour
(on the firing of a transition, parts of the YAWL net are cleansed of tokens),
and the handling of multiple instances tasks.

Since this book concentrates on the conceptual aspects of process lan-
guages and not on technical aspects, a simplified version of YAWL nets is
introduced. The interested reader is referred to the bibliographical notes of
this chapter for further reading on YAWL, including detailed technical infor-
mation and the YAWL system.

Because YAWL specifications contain a set of YAWL nets, YAWL nets are
defined first.

Definition 4.9 A YAWL net is a tuple (C, i, o, T, F, split, join, rem, nofi),
such that

• C is a set of conditions
• i ∈ C is the initial condition, and o ∈ C is the final condition
• T is a set of tasks, such that C and T are disjoint
• F ⊆ (C − {o} × T) ∪ (T ×C − {i}) ∪ (T × T) is a flow relation, such that

every node in C ∪ T is on a directed path from i to o
• split : T �→ {And,Xor,Or} is a partial mapping that assigns the split

behaviour of a task
• join : T �→ {And,Xor,Or} is a partial mapping that specifies the join

behaviour of a task
• rem : T �→ P(T ∪ C − {i, o}) specifies the subnet of the YAWL net that

is cleansed when the task is executed, where P(S) denotes the power set
of S

• nofi : T �→ N × N
inf × N

inf × {dynamic, static} is a partial function
that specifies the number of instances of each task (min, max, threshold
for continuation, and dynamic/static creation of instances), where N

inf

indicates the set of natural numbers plus an infinite value symbol.

�

YAWL nets, also definition wise, are an extension of workflow nets. If
(C, i, o, T, F, split, join, rem, nofi) is YAWL net, (C, T, F) is a workflow net,
except for the fact that the flow relation in YAWL nets allows direct arcs
between tasks. As discussed below, this is a shorthand notation for a more

184 4 Process Orchestrations

Petri-net-like flavour, in which there is always a condition between the tran-
sitions, representing the tasks.

In workflow nets, labels of transitions mark the split and join behaviour.
These labels are not part of the formal definition of workflow nets. In contrast,
the annotation of transitions with specific split and join behaviour is part of
the definition of YAWL nets.

For each task a cancellation region can be defined. When a task with a
cancellation region is executed, all tokens are removed from the cancellation
region. The removal function rem defines parts of the YAWL net that need
to be cleansed from tokens when the task is executed. In this way, nonlocal
behaviour can be expressed.

There are also differences with respect to handling tokens. In Petri nets,
firing of a transition removes tokens from its input places and adds tokens
to its output places. In Petri nets, tokens are never on transitions. In YAWL
nets, however, tokens reside at transitions while the transition is being exe-
cuted. This also means that the execution of a transition takes time, another
fundamental difference to Petri nets (and also to workflow nets), in which the
firing of transitions does not consume time.

The number-of-instances function nofi can be used to assign information
about multiple instances to tasks. In an entry (min,max, threshold, d/s) as-
sociated with a task t,

• min: Minimum number of instances of task t for one case
• max: Maximum number of instances of t for one case
• threshold: If the threshold is reached, then all active instances of that task

are cancelled and the task completes
• d/s: The letter d stands for dynamic and s stands for static creation of new

instances. In the dynamic case, new task instances can be created while
instances of this task are already running. Static means that all instances
are created up front, and no additional instances can be created at run
time of the task.

YAWL specifications use YAWL nets as building blocks, and multiple YAWL
nets involved in a workflow specification can be connected to each other by
composite tasks.

Definition 4.10 A YAWL specification S is a tuple (Q, top, T �,map), such
that

• Q is a set of YAWL nets
• top ∈ Q is the top level YAWL net
• T � =

⋃
N∈Q TN is the set of all tasks. Conditions and tasks of all YAWL

nets are disjoint, that is,
N1 �= N2 =⇒ (CN1 ∪ TN1) ∩ (CN2 ∪ TN2) = ∅, ∀N1, N2 ∈ Q.

• map : T � �→ Q − {top} is a function that maps each composite task onto
a YAWL net. Hence, each task t ∈ T � for which map(t) is defined is a
composite task.

4.5 Yet Another Workflow Language 185

For each YAWL net, except the top-level net, there exists a task that maps
to it, and for each YAWL net there exists at most one task that maps to
it.

�

Fig. 4.53. Notational elements of YAWL, van der Aalst and ter Hofstede (2005)

The notational elements of Yet Another Workflow Language are shown in
Figure 4.53. The notation borrows most elements of workflow nets, so that
conditions are represented by circles and tasks are represented by rectangles.
The initial condition and the final condition of a YAWL net are labelled with
specific symbols.

There are several notational extensions for tasks. Composite tasks have a
double border to indicate that they map to a YAWL net. Tasks with multi-
ple instances are represented by double rectangles, as shown in Figure 4.53.
Composite tasks can also have multiple instances; in this case, the notational
symbols are combined.

The graphical representation of the split and join behaviour of a task is
equivalent to that in workflow nets. Finally, the set of tokens that are removed
when a task is executed is shown by a dotted line. This graphical representa-
tion might become cumbersome if the tasks and conditions are spread across
a large YAWL specification and if multiple tasks remove tokens.

4.5.2 Simple Control Flow Patterns

We now discuss how YAWL supports control flow patterns. It is obvious that
the basic control flow patterns are directly supported. The sequence pattern

186 4 Process Orchestrations

is shown in Figure 4.54, where two alternative representations are shown: in
YAWL nets, the control flow edge can directly connect A and B, so that the
condition place can be dropped. Notice that these two representations are
equivalent, that is, any YAWL net with conditions connecting two tasks can
be transformed to an equivalent YAWL net with direct connections, and vice
versa.

Fig. 4.54. Representations of sequence pattern in YAWL

And split and and join patterns are shown in part (a) of Figure 4.55.
On completion of the split task A (split(A) = and), tasks B, C, and D are
enabled, and the three tasks can be executed concurrently. The join task
E (join(E) = and) is enabled only if B, C, and D have been completed.
The exclusive or split shown in part (b) of that figure selects exactly one
alternative, so that E can start if exactly one branch is completed. In this
case, split(A)= join(E) = Xor.

Fig. 4.55. And split/join and xor split/join patterns

YAWL specifications require additional information that allows evaluating
conditions to decide, for instance, which path in an exclusive or split to take.
These conditions, however, are not part of the formal specification.

Figure 4.56 shows the inclusive or split. From a notation point of view,
the or split and the or join can be defined similarly to the other control flow
structures. However, the decision on when the or join is activated is complex.
These aspects will be discussed in more detail when the execution semantics
of YAWL is investigated.

4.5 Yet Another Workflow Language 187

Fig. 4.56. Inclusive or split and inclusive or join patterns

4.5.3 Execution Semantics

The execution semantics in YAWL is defined by state transition systems. Each
YAWL specification has a corresponding state transition system that describes
the execution semantics of process instances based on that specification. The
rules implemented in this state transition system are of a generic nature, so
that they can be applied to any YAWL specification.

The overall idea for expressing the execution semantics is that each task
is represented by an individual state transition diagram. A state transition
diagram of a task specifies its current state. The state of the process instance
is then represented by the combined state of all tasks involved in the process
instance plus conditions that are currently met at the process level.

Task Instances

State transition diagrams consist of conditions represented by circles and tran-
sitions represented by rectangles. Since multiple instances tasks can take more
states than single instance tasks, single instance tasks are investigated first.
The state transition diagram for single instance tasks is shown in Figure 4.57.
In this section, task instances are investigated before state transition dia-
grams at the process level are investigated. To stay in line with terminology
in YAWL, this section uses the term task instance, which describes the same
concept as the term activity instance we have used so far.

The following conditions are available for a task instance:

• enabled: Task instance is enabled, but not yet executing
• exec: Task instance is currently executing
• completed: Task instance is completed
• active: Task instance is currently active

The execution semantics of a task instance is specified by the state transition
diagram shown in Figure 4.57. Despite the fact that transitions do not use
Petri net transition semantics, it is appropriate to discuss the basic operation
of state transition diagrams with Petri net terminology.

When the task instance is entered, a token is put on the active and enabled
conditions. An enabled task instance can start. Once the start transition fires,

188 4 Process Orchestrations

Fig. 4.57. State transition diagram for YAWL tasks with static number of instances

the task instance enters the exec condition. When the task instance completes,
it enters the completed condition; finally, the task instance is terminated by
firing the exit transition. Note that the active condition and the exit transition
are somewhat artificial for single instance tasks; their role will become clear
when multiple instances tasks are addressed.

To summarize, the state transitions for a task t have the following seman-
tics. The state transition enable checks the join condition of t; t might be
a join node of type And, Xor, or Or, as specified by join(t). When the en-
able transition occurs, the input tokens as defined by the join condition are
removed from the input conditions of the task.

In case of a single instance task, one token is put in the active condition and
one token is put in the enabled condition. When the start transition occurs,
one token is removed from the enabled condition and one token is added to
the exec condition. The task instance is now executing. The termination of a
task instance is represented by the completed transition in the state transition
diagram. In this case, one token is removed from the exec condition and one
token is added to the completed condition.

The exit transition is specifically relevant for multiple instances tasks,
because it fires if the termination condition of a multiple instances task is met.
In case there is a cancellation region defined for task t, the exit transition also
removes tokens from the cancellation region of the workflow specification, as
defined by rem(t). Finally, the exit state transition generates tokens depending
on its split behaviour, defined by split(t).

The state transition diagram for multiple instances tasks is shown in Fig-
ure 4.58. There is an additional state transition, add, that spawns new task
instances. Arcs drawn in bold indicate that multiple tokens can flow along
these arcs.

To discuss the execution semantics of a multiple instances task, the static
case is considered first. In this case, all task instances are created up front,

4.5 Yet Another Workflow Language 189

Fig. 4.58. State transition diagram for multiple instances tasks with dynamic cre-
ation of new instances

and no task instances can be added while instances of the task run. Consider
a multiple instances task with [4, 6, 4, s]: four to six task instances are cre-
ated, and the multiple instances task terminates when the threshold of four
instances that have completed is reached.

Consider a process instance in which the enable transition creates five
task instances by putting five tokens in the active condition and five tokens
in the enabled condition. For each token in the enabled condition, the start
transition can fire.

The termination of the overall task (completion of the required task in-
stances) is realized by the exit transition. Exit can fire if the threshold number
of tokens are in the completed condition, indicating the completion of a suffi-
cient number of task instances. Assuming four task instances have been com-
pleted, the threshold value is reached, and the exit transition removes four to-
kens from the completed condition and four tokens from the active condition.

However, since five task instances have been started, there is one additional
task instance present. This task instance is represented by one token in the
active condition and one token in either the enabled or the exec condition.
This task instance might also have already entered the completed condition.
In the example shown in Figure 4.59, the task instance is still executing.

To implement a proper completion of the task, the exit transition needs
to delete all remaining tokens from the state transition system of the task. In
this case, two tokens that collectively represent the fifth (and not required)
task instance are removed, completing the task and all its task instances, of
which four have been performed completely.

In the example discussed, the number of task instances was statically de-
fined, so that the dynamic creation of new task instances was not possible. In
the following example, additional task instances can be created at run time.
Let [3, 10, 8, d] define the multiple instances property of the task. This means

190 4 Process Orchestrations

Fig. 4.59. State transition diagram for multiple instances task with five instances,
four of which have completed

that there are at least three instances, at most ten instances, and the threshold
is eight completed task instances.

Assume that three task instances are started up front. In this case, the
enable transition puts three tokens in the active condition and three tokens
in the enabled condition. The enabled task instances can start.

The dynamic creation of new task instances is represented by the state
transition add. As soon as there is one task instance in the active condition,
the add transition can fire. When it fires, an additional token is put in the
enabled and active conditions, representing the creation of a new task instance
at run time. In this way, add realizes the dynamic creation of task instances at
run time. Using this feature, YAWL directly supports the multiple instances
without a priori run time knowledge control flow pattern, introduced in Sec-
tion 4.1.

The other parts of the state transition system remain unchanged, so that
the originally created task instances and the dynamically created task in-
stances are handled equivalently: the exit transition can fire if there are a
sufficient number of completed task instances available, in this case, eight.

The actual trigger for creating new task instances is not in the scope of
the state transition system. It is assumed that the user or a software system
spawns new task instances as desired. The state transition system is capable
of monitoring the state of a task, including the states of its task instances.

Process Instances

The discussion of state transition diagrams is extended from a localized view of
individual tasks to a process view. In order to do this, a number of definitions
are required. The first definition extends the compact representation of YAWL
nets in a way that it syntactically complies with the workflow net definition:

4.5 Yet Another Workflow Language 191

wherever there is an arc connecting two tasks in a YAWL net, a new condition
is added and the arcs are modified accordingly.

Definition 4.11 Let N = (C, i, o, T, F, split, join, rem, nofi) be a YAWL
net.

• Cext
N is an extended condition set , such that

Cext
N = C ∪ {cij |(ti, tj) ∈ F ∩ T × T}

• F ext
N ⊆ Cext

N × T ∪ T × Cext
N is an extended flow relation set , such that

F ext
N = F − T × T ∪ {(ti, cij), (cij , tj)|(ti, tj) ∈ F ∩ T × T}

�

This definition is illustrated by an example, shown in Figure 4.60, which
exhibits a YAWL net

W1 = (C1, i1, o1, T1, F1, split, join, rem, nofi),

such that C1 = {i1, o1}, T1 = {A,B,C,D,E, F,G}, split(C) = Xor, and
join(G) = Xor. The flow relation F1 is given by the arrows in Figure 4.60.

Observe that task F is a composite task, referencing a YAWL net W2, with
C2 = {i2, o2}, T2 = {H, I}, and F2 = {(i2, H), (H, I), (I, o2)}. For the time
being, the multiple instances tasks are not defined in detail. The respective
workflow specification is a tuple (Q, top, T �,map), such that Q = {W1,W2},
top = W1, T

� = {A, . . . I}, and map(F) = W2.

Fig. 4.60. YAWL specification

The extended condition set and the extended flow relation are shown in
Figure 4.61. Observe that for each direct connection between tasks in the

192 4 Process Orchestrations

original YAWL net, one condition and the respective arcs are added: Cext
1 =

{i1, cAB, cBC , cCD, cCE , cCF , cDG, cEG, cFG, o1}.
The extended flow relation F ext

1 is given by the arrows in Figure 4.61. Anal-
ogously, the extended condition set and the extended flow relation for W2 are
given by Cext

2 = {i2, cHI , o2} and F ext = {(i2, H), (H, cHI), (cHI , I), (I, o2)}.

Fig. 4.61. YAWL specification with extended condition set Cext

Since there are multiple process instances for which tasks are being ex-
ecuted, the identity of these cases needs to be taken into account when de-
scribing the state of tasks and their task instances. Therefore, the following
assumptions concerning process identifiers are made.

• Each process instance has a unique case identifier.
• Each task instance has a unique task instance identifier.
• Identifiers are structured to allow for child/parent relationships. This

means that each task instance identifier can be associated with its pro-
cess instance or case.

• I denotes the set of identifiers.

Based on case identifiers and the state transition system discussed above, a
workflow state can be characterized as a bag of tokens, where each token has
a condition and a case identifier.

Definition 4.12 Let S = (Q, top, T �,map) be a YAWL specification, and
let C� =

⋃
N∈Q Cext

N be an extended condition set. A workflow state s of a
process instance associated with workflow specification S is a multiset over
Q� × I, where Q� is the set of conditions of all tasks in the process instance,
that is,

4.5 Yet Another Workflow Language 193

Q� = C� ∪ (
⋃

T∈T�

{exect, activet, enabledt, completedt})

�

A workflow state is characterized by a state transition diagram. This state
transition diagram is composed of state transition diagrams for all its tasks.
These individual diagrams are linked to each other by conditions at the process
level as specified by the extended condition set.

To illustrate workflow states, consider a process instance based on the
workflow specification shown in Figure 4.61. Assume that two instances of
task B are currently active, such that one is still executing and one has already
completed. The workflow state is sketched in Figure 4.62, zooming into the
state transition system for task B.

The enable transition of task B has exactly one incoming arc, which orig-
inates from the cAB condition in the extended condition set. Since B is not a
join node, enable can fire if there is a token in cAB. Assuming two instances
of B are required, two tokens are put in the active state and two tokens are
put in the enabled state.

The state transition diagram represents a state, in which one task instance
has completed and one task instance is still executing. When the second task
instance of B is also completed, the exit transition can fire, terminating task
B. A token is put on condition cBC , which is then used to enable task C. Note
that each task A, . . . , I is represented by a state transition diagram linked to
the state transition diagram of the process.

Nested Processes

The approach of defining the execution semantics of process instances by
state transition diagrams can be extended conveniently to nested processes.
Figure 4.63 shows the extended state transition diagrams for composite tasks.

When an instance of a composite task is started, one token is put on the
exec state, indicating that the task instance is now running. The detailed
status of the subprocess is shown in the lower part of Figure 4.63. Starting
the task also puts a token in the initial condition of the subprocess, marked
by imap.

The ellipsis summarizes the state transition diagram of the subprocess
(without the initial and the final condition, of course). When the subprocess
terminates, the condition omap is reached, and the complete transition can
fire, completing an instance of the subprocess.

The extension of the state transition diagram to composite tasks is or-
thogonal to multiple instances tasks, so that by adding an add transition,
multiple instances of composite tasks, and therefore also multiple instances of
subprocesses, can be represented properly.

The example discussed above is used to investigate the execution of com-
posite task F realized by the YAWL net W2, shown in Figure 4.61. A partial

194 4 Process Orchestrations

Fig. 4.62. Workflow state with two task instances of B active, one is executing and
one has completed

state transition diagram focusing on the state of the composite task is shown
in Figure 4.64.

When an instance of the composite task F is executed, a token is put on
the exec state of the state transition diagram of that task. In addition, the
subprocess needs to be started, represented by a token in the start condition
of the YAWL net that F maps to; since map(F) = W2, a token is put on i2,
the start condition of W2.

The token at i2 enables the subprocess. The first task to execute is H.
The lower part of Figure 4.64 shows the state during the execution of the
subprocess where task H is currently executing. When H terminates, a token
is put on state cHI , so that the execution of the subprocess can continue with
the multiple instances task I. This example shows quite well the recursive
application of state transition diagrams for composite tasks.

4.5.4 Advanced Control Flow Patterns

Having discussed how the execution semantics is specified, we can investigate
advanced control flow patterns.

Discriminator

The discriminator is a specific type of join node that uses the first signal it
receives for triggering the outgoing task. The other signals are ignored. When

4.5 Yet Another Workflow Language 195

Fig. 4.63. State transition system for composite tasks

signals have been received from all incoming branches, the discriminator resets
itself. The authors of Yet Another Workflow Language propose to simulate this
behaviour of the discriminator pattern by an exclusive or join in combination
with a cancellation region in the way shown in Figure 4.65.

In this example, assume that tasks B, C, and D are active concurrently,
following the and split task A. Assuming that B completes first, the discrim-
inator fires, and E is triggered. Since E is an exclusive or join task, it can
be executed. Since a cancellation region is defined for E, E deletes all tokens
from the region. In this case, tokens are withdrawn from tasks C and D.

This simulation of the discriminator pattern with exclusive or join and
cancellation region is now evaluated with respect to the semantics of the
discriminator. The simulation exhibits significant semantic differences with
the specification of the discriminator. First of all, the discriminator does not
cancel running activities.

All activities on the incoming branches of the discriminator can complete
without disturbances; only their termination will be ignored. Secondly, the
cancellation of the activities takes place on the termination of the task instance
E. So the activities are cancelled not before E starts, but after E terminates.
As a result, the proposed representation of the discriminator pattern in YAWL
is not completely satisfying.

196 4 Process Orchestrations

Fig. 4.64. Workflow state, where composite task F is currently active

N-out-of-M Join

The N-out-of-M join has M incoming branches, and the follow-up activity
is triggered once N branches have completed. This behaviour can in part be
expressed in YAWL by multiple instances, as shown in Figure 4.66. The idea
is to start M instances and to define a threshold of N instances, so once N
instances have completed, the multiple instances task completes.

While multiple instances can be used to represent an N-out-of-M join
with identical activities, this approach falls short of representing concurrent
branches comprised of different activities. Therefore, only a very specific type
of N-out-of-M join can be realized in YAWL using multiple instances. Hence,

4.5 Yet Another Workflow Language 197

Fig. 4.65. Discriminator in YAWL using cancellation

the N-out-of-M join is not completely expressed, since it should be able to
synchronize different branches of a process and not only multiple instances of
a given task.

Fig. 4.66. N-out-of-M join using multiple instances

Multiple Instances Tasks

Yet Another Workflow Language is tailored towards supporting multiple in-
stances patterns. The multiple instances without synchronization pattern is
shown in Figure 4.67. In this example, A spawns two concurrent branches,
consisting of multiple instances of task B and a single instance of task C.

The multiple instances of task B are not synchronized, which means that
B cannot have outgoing edges, because outgoing edges would indicate that
the follow-up activity can only be started if the task instances of task B have
completed.

The multiple instances with a priori design time knowledge is shown in
Figure 4.68. In this pattern, the number of instances of task B is known at
design time. Therefore, the multiple instances attributes of task B can be set
accordingly.

By setting the minimum number of instances and the maximum number
of instances to n, where n is the number of required instances of task B, this
pattern can be realized. Notice that the threshold is set to infinity (inf), so
that no threshold will keep all instances from completing. The control flow
edge from B to C indicates that C can only start when all instances of task
B have completed.

198 4 Process Orchestrations

Fig. 4.67. Multiple instances without synchronization

Fig. 4.68. Multiple instances with a priori design time knowledge

If the number of instances is known only at run time, but before the first in-
stance of B starts, a function is required to determine the number of instances
of B, as shown in Figure 4.69. This difference with the previous pattern is re-
flected by using q for the number of instances, where q is determined at run
time of the process instance, but before the start of multiple instances task
B. For example, the number of line items in an order can be determined at
run time. In the example, q reflects this number, so that exactly q instances
of task B are performed.

Fig. 4.69. Multiple instances with a priori run time knowledge

Figure 4.70 shows multiple instances without a priori run time knowl-
edge. In this pattern, the number of instances of B becomes available only
while instances of task B run. This means that new instances of B can be
created dynamically. This behaviour of the multiple instances task in YAWL
is described by the fourth parameter d. We still might define a minimum, a
maximum, and a threshold value. But these can also be set to inf, providing
maximum flexibility of a multiple instances task.

4.5 Yet Another Workflow Language 199

Fig. 4.70. Multiple instances without a priori run time knowledge

4.5.5 Discussion

Yet Another Workflow Language has a number of advantages, but also some
drawbacks. The graphical representation of process models is closely related
to workflow nets, so that people familiar with workflow nets can use YAWL
immediately.

The execution semantics of YAWL is well-specified by state transition
systems. The representation of executing tasks by state transition systems
combines state transition diagrams—to describe the dynamic behaviour of
process activities, as shown in Figure 3.9—with Petri net markings.

One of the conceptual issues when representing business process activities
by Petri nets is the timeliness of the transition firing. Business process activ-
ities take time, they have a start, they are active for a time interval, before
they complete. In contrast to Petri nets, the durations of process activities
are well captured by state transition systems in YAWL. At the same time,
process instances are represented by tokens, similar to markings in Petri nets.

YAWL has excellent support for multiple instances patterns. The specifi-
cation of multiple instances actually goes one step ahead of the control flow
patterns in that it allows us to define a threshold of completed task instances.
The construct to model multiple instances tasks in YAWL is very useful and
has many applications in real-world business processes.

The semantics of multiple instances tasks is handled very well by state
transition systems in YAWL. The add transition allows the dynamic creation
of new task instances while task instances are active; the exit transition can
realize the threshold semantics by cancelling all remaining task instances when
the threshold number of completed instances has been reached.

The state transition systems also capture in a very elegant way composite
tasks. By recursively applying the concept, subprocesses can easily be at-
tached to composite tasks. The multiple-instances property is orthogonal to
tasks being composite, so that any composite task can at the same time have
multiple instances.

The remove function rem associated to tasks allows us defining regions
of the workflow specification from where to withdraw tokens when the task
completes. Conceptually it is rather simple to “remove tokens” from process
instances to cancel tasks. It becomes much harder, however, when we look at
the concrete realization of these tasks.

200 4 Process Orchestrations

In real-world business processes, many tasks are realized by software sys-
tems. Removing a token from a task means to cancel the invocation of the
system. If the software system has transactional capabilities then the trans-
action can be aborted, rolling back the software system to a consistent state.
Not all software systems used in business processes are, however, are trans-
actional. In this case, the software might have already performed its work
partially at the time, the token is removed. In such situations, it is unclear,
how the business process management system should behave. In many cases,
human involvement is required to solve the resulting problems manually.

We have already discussed in some detail the weaknesses of YAWL in
representing some advanced control flow patterns, including the discriminator
and the M-out-of-N join. Despite these drawbacks, YAWL is a well-designed
process modelling language that also comes with prototypical implementations
for modelling and enactment.

For further information about the fundamentals of YAWL and the YAWL
system, the reader is referred to ter Hofstede et al. (2010), a comprehen-
sive book that explains the complete conceptual basis of YAWL. This also
includes the handling of data. For each YAWL net, a data passing model
specifies the data flow dependencies between its tasks. Resources are defined
in an organizational model, featuring hierarchical decomposition. The distri-
bution of work is defined in a worklist distribution model, which uses the
organizational model. Hence, not only the execution semantics is defined on
a conceptual level, but also other aspect that are important for designing and
implementing a workflow management system.

4.6 Graph-Based Workflow Language

In this section, a graph-based workflow language is introduced. This language
was developed in the context of a commercial workflow management system.
It exhibits a series of interesting concepts that are not addressed by the other
process languages discussed in this chapter, including the explicit representa-
tion of data dependencies between activities and dead path elimination as a
technique to describe the execution semantics of business processes.

4.6.1 Process Metamodel

To illustrate this modelling language, an example of a credit request process
is shown in Figure 4.71. The activities are shown as nodes of the graph,
control flow is represented by solid arcs, and dotted arrows indicate data flow.
Data flow, for instance, between activities Collect CreditInfo and Assess Risk
indicates that Assess Risk requires data that has been created or modified by
Collect CreditInfo.

The process starts with collecting credit information, followed by an as-
sessment of the credit risk. Then, either the credit is accepted or a request

4.6 Graph-Based Workflow Language 201

Fig. 4.71. Credit request process model, expressed in graph-based workflow lan-
guage

approval activity is started. The request approval activity determines the final
decision on the credit request; it either approves the credit or rejects it. In
any case, the requestor is informed by a notification message.

Data is covered by parameters of activities; each parameter has an asso-
ciated data type. Each activity has a set of input parameters and a set of
output parameters (might be empty). Whenever the output parameter of one
activity is used as an input parameter of another activity, a data flow occurs.
Transitive data flow is often not shown in process models.

Each control flow edge has an associated condition. This condition is eval-
uated after the activity from which the control flow originates has terminated.
If the condition is evaluated to true, the edge is signalled, and the follow-up
activity can be started.

The execution semantics of process graphs is based on the signalling of
edges. There are two ways of signalling: true signalling and false signalling.
When an activity terminates, the conditions of its outgoing edges are evalu-
ated. For each edge that evaluates to true, the follow-up activity is signalled
true. For each edge that evaluates to false, the edge is signalled false.

When all incoming edges of an activity are signalled—that is, each edge is
signalled true or false—the start condition of that activity is evaluated. The
start condition realizes the join behaviour of that node. If the start condition
of an activity evaluates to true, the activity enters the enabled state. If it
evaluates to false, the activity is not enabled. In this case, the activity is
skipped and all its outgoing edges are signalled false.

By using true and false signalling, the or join problem is solved, because
each incoming edge will be signalled eventually. This technique is called dead
path elimination, because paths not taken in the execution of a process are
marked with the false signal; they are therefore somehow eliminated. Unfor-
tunately, dead path elimination only works in the absence of loops in process
models, but the iteration of activities guided by an exit condition is supported.

Each activity is associated with a start condition. As indicated above,
this start condition is evaluated if all incoming control flow edges have been

202 4 Process Orchestrations

Fig. 4.72. Detailed view on parameters and conditions (partial process)

signalled (either true or false). The start condition uses this information as
well as input parameters received from previous activities to decide on the
state transition. If the start condition is evaluated to true, then the activity
is enabled. If it is evaluated to false, the activity is skipped and false signals
are sent to each of its outgoing edges, regardless of the conditions attached to
these edges.

To illustrate these concepts, Figure 4.72 shows a refined version of the
process model shown above, which includes parameters, start conditions, and
data flow between process activities.

The Collect CreditInfo activity is responsible for providing information
about the credit, including customer information and the amount requested.
This information is stored in the output parameter CreditInfo of the Collect
CreditInfo activity. The Assess Risk activity takes the credit information as
input parameter and assesses the risk of granting the credit. The result of this
activity is stored in an output parameter RiskFactor that is made available
to the follow-up activities Accept Credit and Request Approval.

The use of start conditions can be illustrated in this example: the Request
Approval activity can be started if the credit amount is at least 10000 Euros
and the risk factor is high. This start condition takes as input the risk factor
and the credit amount, both of which are provided to the Request Approval
activity by the output parameters of the Assess Risk activity.

The start condition of the AcceptCredit activity makes sure that it can
only be started if the credit amount is below 10000 Euros or the risk factor
is low. The credit can also be accepted if the credit was approved by the
Request Approval activity. This information is made available to the Accept
Credit activity by the output parameter RiskFactor of Request Approval.

4.6 Graph-Based Workflow Language 203

Fig. 4.73. Metamodel of a graph-based workflow language

Depending on the particular implementation used to enact this process,
either data can be transferred between activities by the business process man-
agement system, or references to data objects can be subject to data flow, so
that the system is not burdened with large amounts of data if complex data
needs to be transferred between process activities.

To organize these concepts, a workflow metamodel is shown in Figure 4.73.
The workflow class is the central class in the metamodel; it contains work-

flow objects that can be either atomic or complex, and atomic workflows can
be executed either automatically or manually. This property of workflows is re-
flected in the metamodel by complex and atomic as subclasses of the workflow
class. The workflow hierarchy is represented by the nesting class, an associ-
ation class that defines the relationship between a complex workflow and a
workflow, which can be complex or atomic. Atomic workflows are also called
activities.

The process model shown in Figure 4.72 can be represented properly in
this metamodel: there are atomic workflows, Collect CreditInfo, Assess Risk,
Request Approval, and Accept Credit, that are linked by control connectors,
as shown in the figure. Each control connector is associated with exactly
two workflows. Note that atomic workflows are also workflows, due to the
generalization relationship between the respective classes.

Each atomic workflow is associated with a set of input parameters and a set
of output parameters. These sets might be empty, as is the input parameter
set of the Collect CreditInfo activity. Input and output parameters can be
involved in a data flow. Each data flow connects an output parameter to an

204 4 Process Orchestrations

input parameter. The data types of parameters connected by data flow need
to be compatible.

Observe that each parameter can be involved in multiple data flows. The
start condition of a workflow is used to evaluate at run time if the workflow
has to be executed. Information passed by data flow can be used for this
evaluation.

Fig. 4.74. Process instance based on process model shown in Figure 4.72

4.6.2 Process Instances

The enactment of workflows based on these specifications is addressed using
the process instance shown in Figure 4.74. Dead path elimination is used to
describe the execution semantics of process instances that are represented in
graph-based languages.

The Accept Credit activity can only be enabled after request approval has
signalled its outgoing edge. If Request Approval is executed, then the signalling
is true; otherwise, the edge is signalled false. Therefore, after the Assess Risk
activity has provided a high risk factor as output value, Accept Credit cannot
be started, at least not immediately after Assess Risk terminates.

Since in the particular process instance, the risk is assessed to be high,
the request approval activity needs to be executed, and the start condition
of the Request Approval activity is evaluated to true. This activity is started
and approves the credit request; this approval is represented by changing the

4.6 Graph-Based Workflow Language 205

value of the risk factor from high to low. When the edge to the Accept Credit
activity is signalled, the start condition of that activity is evaluated to true,
and the credit is granted.

Fig. 4.75. Process instance where request approval activity is not required

A second process instance is shown in Figure 4.75. In the case shown,
Jane requests a credit amount of 16000 Euros. Assess Risk determines a low
risk factor, so Request Approval is not required. In this case, the edge from
Assess Risk to Request Approval is signalled, but the start condition of Request
Approval is evaluated to false, since this activity is not required.

Request Approval then relays a false signal to its outgoing edge, in this case,
to the Accept Credit activity. Now all incoming edges of the Accept Credit
activity have been signalled, so that the start condition can be evaluated.
Since the risk factor is low, the start condition is evaluated to true, so that
the credit can be granted.

4.6.3 Discussion

Graph-based workflow languages are useful for implementing business pro-
cesses, in which process activities are realized by software systems. Just as
procedures realized by software systems read input parameters on their start
and write output parameters on their termination, so do process activities in
graph-based workflow languages.

Data flow can be expressed well by relating output parameters of process
activities to input parameters of follow-up activities. Since control flow is

206 4 Process Orchestrations

defined by edges between activities and start conditions of activities, basic
control flow patterns, such as sequence, splits, and joins can be expressed.

Graph-based workflow languages do not support arbitrary cycles, because
in cyclic process models, dead path elimination causes problems. Advanced
control flow patterns, such as multiple instances patterns or discriminator
pattern, are also not supported by graph-based workflow languages.

4.7 Business Process Model and Notation

This section introduces the Business Process Model and Notation (BPMN),
developed under the coordination of the Object Management Group. Version
2 of this international standard introduces a series of modifications, including
a new extension of the acronym. BPMN used to stand for Business Process
Modeling Notation. In Version 2, the standard also defines a meta-model, so
that Business Process Meta Model and Notation would have been a valid
choice. Unfortunately, the term meta was dropped, resulting in the rather im-
precise official extension we now see in this section’s heading. In the remainder
of this book, we will mostly use the acronym.

The intent of the BPMN for business process modelling is very similar to
the intent of the Unified Modeling Language for object-oriented design and
analysis. To identify the best practices of existing approaches and to combine
them into a new, widely accepted language. The set of ancestors of BPMN
includes graph-based and Petri-net-based process modelling languages, such
as UML activity diagrams and event-driven process chains.

While these modelling languages focus on different levels of abstraction,
ranging from a business level to a more technical level, the BPMN aims at
supporting the complete range of abstraction levels, from a business level to a
technical implementation level. This goal is also laid out in the standards doc-
ument, which states that “The primary goal of BPMN is to provide a notation
that is readily understandable by all business users, from the business analysts
that create the initial drafts of the processes, to the technical developers re-
sponsible for implementing the technology that will perform those processes,
and finally, to the business people who will manage and monitor those pro-
cesses. Thus, BPMN creates a standardized bridge for the gap between the
business process design and process implementation.”

The BPMN defines several diagram types for specifying both process or-
chestrations and process choreographies. Since this chapter focuses on or-
chestrations, only business process diagrams and collaboration diagrams are
discussed in this section. Diagram types regarding process choreographies,
that is, conversation diagrams and choreography diagrams, will be discussed
in the next chapter.

To classify the level of support that a particular BPMN software tool
provides, the standard introduces so called conformance classes.

4.7 Business Process Model and Notation 207

• Process Modeling Conformance: The process modeling conformance class
includes the BPMN core elements, process diagrams, collaboration di-
agrams and conversation diagrams. Subclasses are defined that contain
a limited set of visual modelling elements (Descriptive subclass), an ex-
tended set of modelling elements (Analytical subclass) and modelling ele-
ments that are required to represent executable processes (Common Exe-
cutable subclass), respectively.

• Process Execution Conformance: The process execution conformance class
requires a software tool to support the operational semantics of BPMN.
If, in addition, the mapping from BPMN to WS-BPEL as defined in the
standard is implemented, the tool satisfies WS-BPEL Process Execution
Conformance. WS-BPEL and the mapping from BPMN to this XML lan-
guage is addressed in Chapter 7.

• Choreography Modeling Conformance: The choreography modeling confor-
mance class includes the BPMN core elements, collaboration and choreo-
graphy diagrams. Choreography modelling will be discussed in Chapter 5.

4.7.1 Principles

The BPMN standard defines a notation and a meta model that organizes
the concepts used in the notation. While much more complex, the BPMN
meta model is similar to the meta model discussed in Section 3.5. To avoid
redundancy and to provide a solid basis, the standard is organized in layers.

The BPMN Core Structure is the foundation of the standard, which de-
fines generic concepts like BaseElement, which is the abstract super class for
most BPMN elements. These concepts are refined subsequently in packages
related to processes, choreographies, collaborations, and conversations. The
reader interested in the BPMN meta model is referred to the BPMN stan-
dard, referenced in the bibliographical notes at the end of this chapter. This
text concentrates on the language constructs and their execution semantics
rather than on the organization of the standard.

The basic BPMN modelling elements allow expressing simple structures in
business processes, while expressive power is added by the complete element
set. The basic elements are easy to comprehend, so that process designers
and practitioners can use the language without extensive training. When pro-
cess designers become familiar with the language, more elaborate language
elements can be added.

The graphical notation of a business process is complemented with a set of
attributes. These attributes can be associated with the complete process dia-
gram and with particular elements. Some attribute values have implications on
the visual appearance of the symbols used in process diagrams. For instance,
whenever a gateway activates a single outgoing edge from a set of outgoing
edges, the gateway is marked with the X symbol to indicate its exclusive or
split semantics.

208 4 Process Orchestrations

The BPMN has the flavour of a framework rather than of a concrete lan-
guage, because some aspects, for instance, expressions, are not covered by the
standard, and left to the process designer. Expressions are used, for example,
to decide which branch to follow in the case of an exclusive or split. During
business process modelling projects, the persons responsible can use a lan-
guage of their choice. However, within one business process diagram, only one
expression language can be used.

In case a high-level business process is modelled, informal textual expres-
sions might be useful. An example would be “if the credit amount exceeds
5000 Euros, then the monthly income of the client needs to be checked”. In
this case, the language to formulate expressions would be plain English text.
If business processes need to be represented at a technical implementation
level, formal languages with an operational semantics, such as programming
languages, are required.

Organizational aspects are represented in the BPMN by pools and swim-
lanes, similar to those in UML activity diagrams. There is a hierarchy of
swimlanes within a given pool: lanes, and arbitrarily nested sub-lanes. Lanes
represent organizational entities such as departments in organizations. Sub-
lanes can be used to define organizational entities within departments. Nesting
of arbitrary depth is permitted, but process diagrams might get cluttered in
case of extensive nesting. By drawing flow objects in swimlanes, the organiza-
tional entity responsible for performing the specific objects can be represented
graphically.

Each pool may specify a concrete organization, but it may also represent
a placeholder for a specific organization, that is, a role. Examples of roles in a
supply chain scenario are “supplier”, “manufacturer”, and “customer”. When
it comes to enacting business processes, concrete organizations are bound to
these roles, so that one concrete supplier interacts with a specific manufac-
turer, which interacts with a specific set of customers.

Each process resides in a single pool. As a consequence, each process is
performed by a single organization. Business processes can interact with busi-
ness processes enacted by other organizations in order to realize business-to-
business scenarios. These assumptions of the BPMN regarding pools and the
scope of business processes are in line with Definition 1.1.

4.7.2 Business Process Diagrams

The notational elements in business process diagrams are divided into four
basic categories, each of which consists of a set of elements, shown in Fig-
ure 4.76.

Flow objects are the building blocks of business processes; they include
events, activities, and gateways. The occurrence of states in the real world
that are relevant for business processes and, more generally, anything rele-
vant that happens, can be represented by events. Activities represent units
of work performed during business processes. Gateways are used to represent

4.7 Business Process Model and Notation 209

the split and join behaviour of the flow of control between activities, events,
and gateways.

Fig. 4.76. BPMN: categories of elements

Artefacts are used to show additional information about a business pro-
cess that is “not directly relevant for sequence flow or message flow of the
process”, as the standard mentions. Data objects, groups, and annotations
are supported artefacts. Each artefact can be associated with flow elements.
Artefacts serve only information purposes, so that the execution semantics of
a process is not influenced by them.

Data objects are represented simply by a name; the internal structure of
data objects cannot be defined in BPMN. The main purpose of data object
artefacts is documentation of the data used in the process. By directed asso-
ciation edges, the modeller can represent the fact that a data object is read
or written by a process activity. Paper documents, electronic information, as
well as physical artefacts, like shipped products, can be represented by data
objects.

Text annotations document specific aspects of the business process in tex-
tual form. The text is graphically associated with the object in the business
process diagram that the text explains. Group objects are artefacts that are
used to group elements of a process. Groups do not have a formal meaning;
they just serve documentation purposes. Groups may span lanes and even
pools.

Connecting objects connect flow objects, swimlanes, or artefacts. Sequence
flow is used to specify the ordering of flow objects, while message flow describes

210 4 Process Orchestrations

the flow of messages between business partners represented by pools. Associ-
ation is a specific type of connecting object that is used to link artefacts to
elements in business process diagrams.

Figure 4.77 shows a BPMN business process diagram, representing an
ordering process. The example introduces the main elements of the language:
events, activities, gateways, and sequence flow. The process model starts with
an event. A sequence of activities to analyze the order and to check the stock
are performed, before an exclusive or split is done. The latter is represented
by a gateway with the respective marker.

Fig. 4.77. Business process diagram expressed in BPMN

If the ordered products are in stock, then the lower branch is selected.
Otherwise the product has to be manufactured first, so that the upper branch
needs to be chosen. The expression language used in this process diagram
is plain English text (In stock, Not in Stock), so that humans can easily
understand the conditions. The manufacturing part of the process can be
seen as a detour, since both branches converge in the exclusive join gateway
before the products are shipped, the bill is sent, and the payment is received.

This process diagram also contains events that mark the start and end of
the process. The start event is marked with an envelope symbol, indicating
that the process starts on receiving a message. There are many different event
types and markers for events, the most widely used of which will be discussed
shortly.

Data in processes plays an increasingly important role. The example rep-
resents the order processed as a data object. Data objects can be associated
with flow elements, indicating a relationship. In the example shown in Fig-
ure 4.77, there is a data object Order, which is associated to activities Analyze
Order and Check Stock. The orientation of the association edge indicates the
type of relationship. In our process diagram, Analyze Order writes the data
object, while Check Stock reads it.

Grouping of activities using the group artefact can increase the under-
standing of the process model by humans. This is exemplified by a group an-

4.7 Business Process Model and Notation 211

notated by Make Products. In this example it is rather obvious that the three
activities are responsible for making the product in case the ordered products
are not in stock. However, in larger process models grouping is a convenient
way of expressing additional information for humans that can not conveniently
be provided by the more formal modelling elements of the BPMN.

The roles involved in this process have not been represented in the process
diagram. If the roles are important for the modelling purpose, for example, if
responsibilities in the organization have to be defined or hand-overs between
departments need to be investigated, roles must be represented in process dia-
grams. Figure 4.78 shows a process diagram of the ordering process introduced
above, enriched with role information.

Fig. 4.78. Business process diagram with role information

There are two departments of the company modelled, Manufacturing and
Sales. Receiving and analyzing the order as well as checking the stock and
deciding about manufacturing the products is also decided by the sales de-
partment. Obviously, producing the ordered items is performed by the manu-
facturing department. Since hand-over between organizational entities is im-
portant, the model also contains a data object Product. This illustrates that
also physical products can be represented by data objects in BPMN. In this
case, the write edge from Manufacture Products to Products can be inter-
preted as the production of the physical goods. The read edge from Products
to Ship Products refers to the use of the physical products during the shipment
activity.

212 4 Process Orchestrations

Activities

Activities are units of work. They are the major ingredients of business pro-
cesses. The BPMN provides powerful means for expressing different types of
activities. Figure 4.79 shows the activity types that the BPMN supports.

Fig. 4.79. Activity types in the BPMN

Activities characterize units of work. Activities which are not further re-
fined are called atomic activities or tasks. Activities might also have an inter-
nal structure, in which case they are called subprocesses. Rather than showing
the structure, the modeller can decide to hide the complexity of the subpro-
cess, using the plus symbol. But subprocesses can also be expanded, exposing
their internal structure.

An example of a subprocess is shown in Figure 4.80. In that figure, the
collapsed subprocess is marked with the subprocess marker, and the expanded
subprocess exhibits its internal process structure. The link between the rep-
resentations is established by the unique identifier Evaluate Credit Risk.

Fig. 4.80. Collapsed and expanded subprocess

Call activities can be used to refer to globally defined process diagrams, or
tasks, facilitating reuse of activities. An example of a call activity involving a
globally defined process diagram is shown in Figure 4.81. In the upper part of
that figure, a simple process containing a sequence of activities is shown. The
first activity is an embedded subprocess with activities to set up a project
team and to create a marketing campaign. After these activities have been

4.7 Business Process Model and Notation 213

completed, the embedded subprocess terminates. Then the Update Web Site
activity is performed.

This call activity references the global process diagram shown in the lower
part of that figure, reusing it. This design allows to define certain processes or
tasks once to be used several times. In the example, each update of the web
site could be realized by a call activity, reducing maintenance effort in large
process repositories.

Fig. 4.81. Process diagram with a call activity that references a global process
diagram; the reference is maintained in the respective attribute of the call activity

Activities can be marked with symbols that refine their execution seman-
tics; activity markers are shown in Figure 4.82. We have already used the
subprocess marker. Notice that transactions will be discussed later in this
section after the required events have been introduced.

The loop marker is used to indicate that an activity is iterated during pro-
cess execution. If the activity has the LoopCharacteristics attribute set,
with attribute class StandardLoopCharacteristics, then the activity repre-
sents a while loop or a repeat-until loop. Whether the loop activity realizes a
while loop or a repeat-until loop is guided by the testTime attribute. Setting
it to Before realizes a while loop, while setting it to After realizes a repeat-
until loop. The different types of loops can not be distinguished by the visual
appearances of the respective loop activities in process models.

Multiple instances tasks have the LoopCharacteristics attribute set,
with attribute class MultiInstanceLoopCharacteristics. The multiple in-
stances of an activity can be executed sequentially or in parallel. The number

214 4 Process Orchestrations

Fig. 4.82. Activity markers refine the behaviour of activities

of instances is either specified by an expression that returns an integer value
or by the cardinality of a list data object, discussed below.

The markers for sequential and parallel multiple instances activities are
shown Figure 4.82. A for loop with n iterations can be realized by a sequential
multiple instances activity, whose expression evaluates to n.

Fig. 4.83. Sample adhoc process

A subprocess that is marked with an adhoc marker consists of a set of tasks
that are not related to each other by sequence flow. The execution of tasks
of the adhoc subprocess is not restricted. Each activity can be executed an
arbitrary number of times. This means that adhoc activities are not embedded
in sequence flow; they can be invoked without a specific trigger or event.

An adhoc subprocess is marked with a tilde symbol at the bottom of the
rounded rectangle. Adhoc activities are very useful for unstructured parts
of processes. Using AdHocOrdering, the modeller can define whether the
activities in an adhoc subprocess can be executed in parallel or whether
they are executed sequentially. An adhoc subprocess completes, if its
CompletionCondition evaluates to true. An example of an adhoc subpro-
cess that represents the preparation of a lecture is shown in Figure 4.83.

4.7 Business Process Model and Notation 215

Fig. 4.84. Task types specify the kind of task that is represented

In BPMN, tasks can be decorated with task types which makes it easier for
human readers to understand the specific type the task represents. Figure 4.84
lists the task types of the BPMN.

User tasks represent traditional workflow tasks that involve user inter-
action. When the process comes to a point where a specific task is to be
performed by a user, the user is informed, for instance, by the appearance of
a new work item in his or her inbox.

When selecting the work item, an application is started that the user
works with in order to perform the task. To facilitate role resolution, role and
skill information are typically associated with a user task. Integration with
organizational modelling is required to facilitate role resolution, because the
BPMN does not support the modelling of detailed organizational aspects.

Manual tasks are performed without the support of software systems.
Sending a printed letter or transferring goods in a logistics environment are
examples of manual activities. While the actual execution of these activities is
outside the scope of an information system, the business process management
system needs to be informed about the completion of a manual activity.

The completion information typically includes a return code, so that the
system is aware of a successful or unsuccessful completion of the manual task.
This information can be important for the remaining parts of the business
process, so that in the case of unsuccessful completion, the business process
can take compensating actions for the failed manual activity.

Business rules are logical rules to be interpreted by a rules engine. In
BPMN we can model a task that triggers a business rule by marking it with
a business rule marker and adding the appropriate information. When the
business rule task task is executed, the business rule is invoked. The actual
representation of business rules and their enactment using rules engines is not
in the scope of the BPMN.

A service task is implemented by a piece of software, either using a Web
services interface or an application programming interface to a software sys-
tem. A script task is a task that uses some scripting language expression in
order to be performed. Script tasks are used to represent simple functionality,

216 4 Process Orchestrations

for which no dedicated software system is required. The particular scripting
language used and the interaction platform for script expressions depend on
the tool support available. When the script completes execution, the script
task completes.

There are also task types related to sending and receiving messages. Since
these task types rely on events, we will introduce events first and return to
send and receive tasks only when we have done so.

A compensation task is invoked to compensate for activities that need to
be undone. The compensation concept is strongly connected to transactions,
which will be discussed in the context of compensation events in the next
section.

Events

Events play a central role in business process management, since they are the
glue between situations in the real world and processes that will react to these
events or trigger them. Events in a business process can be partitioned into
three types, based on their position in the business process: start events are
used to trigger processes, intermediate events can delay processes or they can
be triggered during process executions. End events signal the termination of
processes. There are obvious connection rules associated with these events.
Start events have no incoming edges, end events have no outgoing edges, and
intermediate events have both an incoming and an outgoing edge.

This book covers the most common event types, shown in Figure 4.85. The
rows contain the event types, the columns the position (start, intermediate,
end) and the nature of the event, discussed shortly. There are also intermediate
events that are attached to boundaries of activities rather than having an
incoming sequence flow.

The simplest type of event is the blanco event that has no marker. (The
standard calls this event none event. Since blanco events are in fact events,
we stick to the former terminology and use the term blanco event.) This event
type is used whenever the cause of the event is either not known or is irrelevant
for the current modelling purpose. Blanco events can be used as start events
or as end events.

Events play two major roles, and each event in a process model plays
exactly one of those. These roles are referred to by catching and throwing. An
event is of catching nature, if the process listens and waits for the event to
happen. Whenever the respective event happens, the process catches it and
reacts accordingly. All start events are catching events.

An event is of throwing nature, if it is actively triggered by the process
during process execution. Sending a message to a business partner is an ex-
ample of a throwing event. All end events are throwing events, because the
end event is actively triggered by the process.

Intermediate events can be either catching or throwing. A good example
is the intermediate message event, which comes in two flavors. As throwing

4.7 Business Process Model and Notation 217

Fig. 4.85. Common event types in the BPMN, adapted from the BPMN Poster,
BPM Offensive Berlin (2011)

event, the intermediate message event sends a message to a business partner.
As catching event, the process waits for a message to come in, that is, it waits
for the event to happen.

218 4 Process Orchestrations

This example shows quite clearly the difference. Catching events wait for
things to happen, while throwing events actively trigger events.

Fig. 4.86. Throwing and catching events

Throwing and catching events are further illustrated in Figure 4.86, which
shows a claim handling process of an insurance company involving interactions
with a client. The process starts with the start message event “catching” the
claim message. (More precisely, with the start event catching the event that
represents the incoming claim message.)

In case the claim is incomplete, the insurance company sends a request
for clarification to the client. This sending of a message is represented by
a throwing intermediate message event. The event symbol is marked with
a black envelope to show this throwing behaviour, that is, the sending of
the message. At this point, the process waits for the event that represents
the receipt of the answer message from the client. The intermediate message
event catches this event and continues with processing the claim and sending
the response letter to the client in the (throwing) message end event.

Fig. 4.87. Using markers to identify send tasks and receive tasks

4.7 Business Process Model and Notation 219

Task types, introduced above, also provide options of expressing certain
real-world situations, for instance, related to sending and receiving messages.
Instead of send events, we can also use send tasks, that is, tasks that are
marked with task type send. Like with sending and receiving events, a dark
envelope represents send tasks, while the light envelope shows that a task
receives a message. Figure 4.87 shows a process diagram using send and receive
tasks. BPMN also supports a specific type of receive task that can be used to
instantiate a process, but a receive event is much more appropriate in most
cases.

Returning to blanco events, blanco start events are of catching nature,
while blanco end events are of throwing nature. Since there is no way of
marking blanco intermediate events as either catching or throwing events,
by convention, all blanco intermediate events are—by definition—of throwing
nature.

Message events are among the most often used events in BPMN. We have
already seen in Figure 4.86 message start events, message end events, and
intermediate message events of catching and throwing nature. We now look
at intermediate events on the boundary of activities, called boundary inter-
mediate events, or attached intermediate events.

Each intermediate event of this kind is associated with an event context,
used to determine whether the event has occurred. In particular, the interme-
diate event will be triggered only, if the activity that the intermediate event
is attached to is still active when the event occurs.

Fig. 4.88. Process diagram with interrupting boundary event

An example of a process model containing a boundary event is given in
Figure 4.88. The process starts by a customer sending a ticket order to a ticket
service. After receiving the message and checking the order, a subprocess is
entered. In the subprocess, the tickets are reserved and finally booked. Notice
that processes and subprocesses do not require start and end events. While it

220 4 Process Orchestrations

is good practice to use start and end events on the process level, they might be
dropped for simple subprocesses. The boundary event represents the option
of the customer to cancel the order.

If the cancellation message is received while the subprocess is still active,
the subprocess is cancelled, and the confirmation of the cancellation is sent. If
no cancellation message is received while the subprocess runs, the subprocess
completes and the tickets are sent.

In this example we have discussed a boundary event that interrupts the
subprocess it is attached to. But boundary events might also be of non-
interrupting nature.

Fig. 4.89. Process diagram with non-interrupting boundary event

An example of a non-interrupting boundary event is shown in Figure 4.89.
In this process, an insuree sends a claim report to an insurance company. The
complex processing of the claim is hidden in the subprocess Process Claim.
While this subprocess is active, the insuree can ask, even multiple times, for
the current status of the claim handling. The respective incoming message
sent is caught by the boundary event, and a status report is sent. Since the
processing of the claim should not be interrupted by this request, the boundary
event is non-interrupting, indicated by its dashed outline.

Timer events are used frequently in process diagrams. They are quite ver-
satile, since they can represent time intervals, points in time, and timers,
similar to count down watches.

Figure 4.90 shows a process diagram involving several types of timer
events. The process starts with a start timer event. By the annotation we
learn that the process is instantiated every first Monday in October. When
this event is caught, a strategy meeting is announced. Then the process pauses
for 14 days, represented by the intermediate timer event.

The execution semantics of intermediate timer events is as follows. When
the previous activity is completed, the timer is started. This is like starting a

4.7 Business Process Model and Notation 221

Fig. 4.90. Process diagram with interrupting and non-interrupting boundary timer
events

count down watch with the value set to 14 days in this case. In Figure 4.90,
we used an annotation to show the time period.

In BPMN, timer events have attributes that are used to represent timer
values in a structured fashion. In particular, the attribute timeDuration holds
an expression that defines the time duration the timer waits for. Attributes
timeDate and timeCycle are used to specify points in time and recurring
timers, respectively.

After the duration has elapsed, the subprocess and thereby the strategy
meeting can be started. When this happens, two additional timers are started
for the boundary events. Timer 1 with duration 12 hours for the interrupting
timer event and Timer 2 with duration 5 hours for the non-interrupting timer
event.

Assuming the subprocess is still active after 5 hours, Timer 2 is triggered,
and a status update is sent. This event does not interrupt the subprocess.
After being triggered, this timer is immediately reset, so that it can trigger
the sending of the next status update after another 5 hours, if the meeting is
still ongoing at that time. This example shows that non-interrupting boundary
events can occur multiple times while the subprocess is active.

If the subprocess is not completed after 12 hours, Timer 1 elapses, and the
subprocess is interrupted. A preliminary report is written, and the process
terminates.

Link events are quite specific, since they—unlike all other events—do not
represent something that happens in the real world. Rather, they are a means
to layout large process diagrams that span multiple pages or screens. A part
of the process ends with a link event of throwing nature, while the next part
of the process starts with a link event of catching nature. Consequently, link
events are intermediate events, even though they have no outgoing (throwing
link event) or no incoming edge (catching link event).

Regarding the execution semantics, two matching link events are equiva-
lent to a sequence flow. It is important to stress that link events do not connect

222 4 Process Orchestrations

Fig. 4.91. Link events connect different parts of one process

multiple processes, but just parts of one process. Link events are illustrated
in Figure 4.91.

Error events also come in two flavours. A throwing error event indicates
the occurrence of an error in a certain scope, for instance, in a subprocess.
Catching error events are always on the boundaries of subprocesses. They
catch the error and interrupt the subprocess, in case certain parts of the
subprocess are still active. After catching an error, typically error handling
activities are performed.

An example involving error events is shown in Figure 4.92. A subprocess for
planning a workshop consists of planning the workshop followed by concurrent
activities involving the registration of attendees and reserving a venue. If too
few attendees register for the workshop, an error is thrown, and the workshop
has to be cancelled. The cancellation is facilitated by a boundary error event
that catches the occurrence of the error within the subprocess. In this example,
error handling is done by the Cancel Workshop activity.

Notice that once the error event is thrown, any running activity in the
subprocess will be interrupted. In the example, Reserve Venue might be still
running at that point in time. If this is the case, it is interrupted immediately,
since no venue needs to be reserved when the workshop is cancelled.

Compensation events are strongly connected to transactions. Transactions
are specific subprocesses, whose activities have transaction semantics, spec-
ified by a transaction protocol. Probably the most widely used transaction
protocol is the ACID model, which states that transactions have the follow-
ing ACID properties:

• Atomicity : Either all activities in a transaction are executed successfully
or none is.

• Consistency : The correct execution of a transaction brings the system from
one consistent state in another consistent state.

4.7 Business Process Model and Notation 223

Fig. 4.92. An error is thrown in a subprocess; it is caught by an error boundary
event attached to that subprocess

• Isolation: The activities of a transaction are executed in isolation from
other transactions, that is, transactions do not interfere with each other.

• Durability : Effects of transactions survive any system failure that might
occur at a later point in time.

Assuming the ACID transaction model, all transactions need to obey the
atomicity property: Either all activities of the transaction need to be suc-
cessfully completed, or none at all. In database systems, this all-or-nothing
property of transactions is typically implemented by locking protocols or mul-
tiversion concurrency control schemes.

In business processes, the situation is a bit more complex, since we cannot
lock large parts of business processes for an extended period of time or create
multiple versions of the same data object. In business process management,
the typical assumption is that each activity is executed in an atomic fashion.
This means, however, that one activity of a transaction can have completed
already, when another activity decides to fail. In this case, the first activity
needs to be undone, using compensation. An example is used to illustrate this
concept.

Figure 4.93 shows a business process diagram that contains a transaction.
The transaction involves activities to book a flight and to book a hotel. The
all-or-nothing property of this transaction states that either both activities
are performed successfully or none will. This property makes sure that the
traveller will not end up with a flight booked and no hotel room booked, or
vice versa.

Thus, the process needs to rule out that one activity of the transaction
succeeds, while the other activity fails. This is done by compensation. Assume
that the hotel booking activity is performed successfully, but the booking of
the flight fails. In this case, the booking of the hotel room needs to be undone.
This is done by cancelling the booking of the hotel room.

When one activity in a transaction subprocess fails, for all activities of the
transaction that have been successfully executed already, the compensating

224 4 Process Orchestrations

Fig. 4.93. Business process diagram with transaction and compensation elements,
adapted from Object Management Group (2011)

activities are started. In this example, after the booking of the flight fails, the
Cancel Hotel compensating activity of the Book Hotel activity is executed.
Thereby, the booking of the hotel room is undone, so that the effects of neither
of the activities in the transaction are persisted.

The cancellation boundary event catches the unsuccessful completion of
the transaction. It can be used to execute activities after the transaction has
unsuccessfully completed, like informing the customer in the example.

Signal events communicate certain situations to a wide audience. For each
signal throw event, there can be several events that catch the signal. Similar
to a flare that can be seen in a wide perimeter, a signal can be caught by
different parts of the same process, by other processes within the same pro-
cess diagram, and even by other process diagrams. Signals are similar to the
event publication / event subscription mechanism in distributed computing,
where a given signal event can have many subscribers throughout the process
landscape.

There are additional types of events that the BPMN supports. For more
information about these—less frequently used—events, the reader is referred
to the standards document.

Sequence Flow and Gateways

In the BPMN, control flow is called sequence flow. Sequence flow is repre-
sented by solid arrows between flow objects, that is, activities, events, and
gateways. BPMN supports several types of sequence flow, including normal
flow, conditional flow, default flow, and exception flow.

4.7 Business Process Model and Notation 225

The normal flow of a business process represents expected and desired
behaviour of the process. It begins in the start event of a process diagram and
continues via a set of flow objects until it reaches an end event.

Exceptional situations are represented by exception flow. With respect
to process execution semantics, there is no difference between normal flow
and exception flow. The only difference is that exception flow does not define
the desired flow of the process, but exceptional situations. Exception flow is
created by intermediate events attached to the boundary of an activity, as
discussed above in the context of boundary events.

There are two additional types of sequence flow, namely conditional flow
and default flow. Since these play important roles in the context of gateways,
we introduce gateways first.

Fig. 4.94. Gateway types in the BPMN, Object Management Group (2011)

In BPMN, each gateway acts as a join node or as a split node. Join nodes
have at least two incoming edges and exactly one outgoing edge. Split nodes
have exactly one incoming edge and at least two outgoing edges. We can
also express gateways with multiple incoming and multiple outgoing edges in
BPMN. These gateways are called mixed gateways. Since two behaviours—
split and join—are expressed by a single concept (for example, exclusive or),
best practice is not to use mixed gateways but to use a sequence of two
gateways with the respective split and join behaviour instead.

The gateway types of the BPMN are shown in Figure 4.94, that is, the
exclusive, the parallel, the inclusive, the event-based, the complex and two
instantiation gateway types, which are discussed later in this section.

As shown in that figure, there are two representations of the exclusive
gateway, one without a marker and one with a marker. This feature of an
unmarked gateway in the BPMN can be considered inconsistent with the
definition of an unmarked, that is, blanco event. The blanco gateway actually
represents a particular kind of gateway, while the blanco event does not. To
avoid misunderstandings, we recommend to always use gateway markers.

226 4 Process Orchestrations

Parallel split and join is supported by virtually any process modelling
language. In the BPMN, there is a parallel gateway that can be used to
represent and split and and join behaviour.

Fig. 4.95. Example involving the parallel gateway

An example is shown in Figure 4.95. This process starts with receiving
and preprocessing an order. Then the parallel gateway triggers the execution
of three activities. The inventory is updated, the goods are shipped, and the
invoice is sent. There are no execution constraints defined between these activ-
ities, they can be executed concurrently. When the activities have completed,
the and join synchronizes the parallel flows, and the process terminates.

Exclusive gateways are also available in any process modelling language.
The gateway realizes an “exclusive” behaviour, because exactly one option is
chosen from a set of alternatives. An example is shown in Figure 4.96. After
the credit risk is evaluated, an exclusive gateway is reached.

This gateway decides which checking activity shall be executed. The credit
is granted if the credit risk is low or a certain threshold value is not exceeded.
In case of medium credit risk, a subprocess for an advanced credit check is
started. If neither of these conditions holds, the credit request is rejected. This
behaviour is operationalized by formal conditions, attached to the sequence
flows. A sequence flow stores its condition in its conditionExpression at-
tribute.

To decide on the branch to select, the exclusive gateway uses these condi-
tions. These sequence flow edges are then specialized to condition flow edges.
The standard defines that the conditions are “evaluated in order”. The first
condition that is evaluated to true is chosen. An exclusive gateways might
have a default edge, which does not have a condition attached. It is always
evaluated last. This execution semantics makes sure that exactly one outgoing
edge will be triggered.

Notice that this property holds even if there are overlapping conditions
on the outgoing edges of the gateway. In Figure 4.96, the conditions are
overlapping, since both conditions might evaluate to true, for example, if
Risk=medium and Amount=800. Assuming that the conditions are evaluated

4.7 Business Process Model and Notation 227

Fig. 4.96. Exclusive gateway with conditions and default flow

from top to bottom, then the first condition evaluates to true, and Grant
Credit is selected. However, if the other condition appears first in the condi-
tion evaluation ordering, then Advanced Credit Check is chosen.

If the requested amount exceeds 10000, none of the conditions evaluates
to true, so that the default flow is taken and the request is rejected. In any
case, the exclusive or split semantics of the gateway is realized.

Since the decision is taken based on data, for instance, the value of the
Risk and Amount data objects, the exclusive gateway is also called data-based
exclusive gateway.

Figure 4.97 shows a process diagram with a loop. The loop is represented
by two exclusive gateways, a join gateway and a split gateway. It is a char-
acteristic of a loop that the join appears before the split in the process flow.
After a document is prepared, it is checked. Depending on the outcome of the
checking activity, either the process is continued with archiving the document
or the loop is iterated.

Fig. 4.97. Exclusive gateways realizing a loop

In BPMN, the process could also be represented by using a single gateway
instead of two gateways. The split gateway that decides whether to iterate
the loop needs to be kept. Instead of the join gateway in the beginning of the
process, the edge from the split gateway can directly lead to the first activity
in the loop. According to the BPMN, activities with multiple incoming edges
act as merge nodes. Such an activity gets enabled and can be executed, if one
of its incoming edges is triggered. This process is shown in Figure 4.98. It has
exactly the same execution semantics as the process shown in Figure 4.97.

228 4 Process Orchestrations

Fig. 4.98. Process diagram with uncontrolled flow

Process activities with multiple outgoing edges are also possible in BPMN.
In this case, each of the outgoing edges will be followed. These activities
might lead to modelling errors. The reason being that the split behaviour of
activities with multiple edges is different from their join behaviour. Activities
with multiple outgoing edges represent a parallel split gateway, while activities
with multiple incoming edges realize a merge gateway.

Fig. 4.99. Process diagram with split and join activities, representing a livelock

This fact is illustrated by Figure 4.99, which shows a variant of the previ-
ously discussed process with activities acting as split nodes (Check Document)
and activities acting as join nodes (Prepare Document). As a result, for each
iteration of the loop, both outgoing edges of the checking activity are trig-
gered. For each iteration of the loop, the document is archived. In addition,
the loop will never terminate, resulting in a livelock.

This modelling error could be fixed by attaching conditions to the outgo-
ing edges of the Check Document activity, that is, by using conditional flow.
However, it is good practice for process activities to have exactly one incoming
edge and exactly one outgoing edge. The split and join behaviour of the pro-
cess should be represented explicitly by gateway nodes rather than implicitly
by activities with multiple incoming or multiple outgoing edges.

Just like an exclusive gateway, an event-based gateway realizes an exclusive
choice. However, rather than deciding itself using process data, the gateway
uses the environment to let others decide on how to continue the process. It
allows several events to happen, and the environment decides on what actually
will happen.

A typical usage of this pattern is shown in Figure 4.100. The process starts
with the sending of an invoice by a reseller to one of its customers, followed by
an event-based gateway. When the gateway is reached, two things can happen.
Either the funds are received or the timer event occurs. Whichever occurs first,
decides, that is, the environment decides on how the process continues.

On the completion of the gateway, the Receive Funds task is enabled.
At the same time, a count down timer for the intermediate timer event is

4.7 Business Process Model and Notation 229

started with a duration of 14 days. If the amount is received within 14 days,
the intermediate timer is deactivated and the process completes. If, however,
the customer does not pay within 14 days, the timer event occurs, and a
reminder is sent. Afterwards, the gateway is reached again, and the customer
has another 14 days for paying his invoice.

Notice that only catching intermediate events and receive tasks can occur
after event-based gateways. The standard defines that either receive tasks or
message intermediate events can occur after a given event-based gateway, not
both. In addition to timer intermediate events, like shown in the example,
signal events and a few other events are allowed at this position, but message
events and timer events occur most frequently.

Fig. 4.100. Example of an event-based gateway

The semantics of an event-based gateway is fundamentally different from
the semantics of a data-based exclusive gateway. In an event-based gateway,
multiple activities are enabled and ready for receiving messages at the same
time, realizing the deferred choice pattern. In the data-based exclusive gate-
way, the decision is made by the gateway itself—more precisely, by the condi-
tions associated with the condition flow edges leaving the gateway. However,
both gateways exhibit an exclusive or semantics.

The inclusive gateway exposes the most flexible behaviour, since it sub-
sumes and extends both exclusive gateways and parallel gateways. Inclusive
gateways can be used in situations where an arbitrary non-empty set of out-
going branches need to be selected. As with the data-based exclusive or split,
it is the responsibility of the modeller that at least one branch be chosen. An
example of an inclusive is shown in Figure 4.101, where a trip is planned and
then—depending on the concrete planning of the trip—any subset of flight,
hotel, and rental car is booked.

A complex gateway allows the definition of combined split and join be-
haviour. Consider a complex split gateway with outgoing sequence flows to A,
B, and C. The gateway may define that either A or, jointly, B and C need

230 4 Process Orchestrations

Fig. 4.101. Example of an inclusive or gateway

to be executed. It may also define that any pair of sequence flows is valid.
The behaviour is specified in the activation condition and an expression of
the gateway. The behaviour of the complex gateway is not known from its
visual appearance, so that modellers should use this construct with caution.

Handling Data

All business processes deal with information or physical artefacts. To repre-
sent information and physical artefacts, BPMN provides data objects. While
the term data object seems to indicate digitalized information, it also covers
physical objects, such as documents and products.

Fig. 4.102. Notational elements regarding data

The notational symbols regarding data in BPMN are shown in Fig-
ure 4.102. Often, data objects represent digitalized objects, such as orders in
an information system. Since BPMN concentrates on process modelling, there
are no data modelling capabilities available. This would also not be appropri-
ate, since the UML provides excellent data and object modelling capabilities,
for example, class diagrams.

The relationships between data objects and activities or, more generally,
flow objects are specified by data associations. A directed edge from an activity

4.7 Business Process Model and Notation 231

to a data object means that the activity creates or writes the data object.
Directed edges in opposite direction indicate read relationships.

Typically processes use data that has been created before the process has
started. Examples of this type of data is customer information stored in a
customer relationship management system or production information stored
in a database. To represent that a process uses these types of data, input
data objects can be used. Analogously, if data objects are created as output
to be used by other processes, these are marked with a data output marker,
as shown in Figure 4.102.

Information systems that store data can be represented in process models
as data stores. Since BPMN covers a wide spectrum of application domains,
also non-technical stores such as, for instance, warehouses, can be represented
by data stores.

The life time of data items that are neither data input nor data output
is restricted to the duration of the process instance, that is, data objects are
volatile. An association of a data object with a data store, however, indicates
that the data object is persistently stored in that data store. Therefore, data
stores do not only serve the documentation purpose but also carry a semantics
that is important for an implementation of the process.

Fig. 4.103. Process diagram involving data objects

A sample business process involving data objects is shown in Figure 4.103.
In this order handling process, the start message event occurs when an or-
der is received. This message contains a data object Order in state received,
indicated by the association from the start event to that data object.

232 4 Process Orchestrations

The Check Order activity might produce different results: either the order
is valid or invalid. This behaviour is represented by two data object symbols
in the diagram, which have different state markers, reflecting the outcome of
the checking activity.

This illustrates that, in general, an association from an activity A to a
data object D in state s means that A might change the state of D to s, but
it might as well not. Modellers need to make sure that at least one of the data
objects an activity is related with in a write association, is actually created
as output.

In the example, the order checking activity changes the state of the data
object to either valid or invalid. The current value or state of a data object
can be used by expressions, for instance, by expressions that decide which
path is taken following an exclusive gateway.

The respective attributes of the conditional flows leaving the exclusive
gateway are visualized. If Order.state=invalid, the upper branch is chosen
and the order is rejected. If Order.state=valid, the lower branch is chosen
and the order is accepted. In the former case, a rejection message is sent. If,
however, the order is accepted, the order is processed, a parcel is prepared
and sent.

Notice that the Prepare Parcel activity reads an order in state processed.
This is a typical use of data objects including states; it implements a business
policy that a parcel can be prepared only if the respective order is processed.
While this situation is obvious for the process shown, the language features
provide additional expressiveness regarding data, which proves quite useful in
real-world settings.

There is a shorthand notation for a data flow between activities that follow
each other directly in sequence flow. Rather than providing two edges from
and to, respectively, the activities, the data object can simply be associated
with the sequence flow connecting these activities. This language construct is
illustrated in Figure 4.103 to show the data flow between the Reject Order
and Send Notification activities.

Data objects also come in collections. A process activity may process a
collection of data, such as a list of data, instead of an individual data object.
A sample business process involving a collection of data objects is shown in
Figure 4.104.

As shown in Figure 4.103, the Process Order subprocess reads the order
data object in state accepted and changes the state of that data object to
processed. The data objects in these states are also shown in the subprocess
refinement in Figure 4.104. Notice that the order in state accepted is a data
input of the subprocess, while the order in state processed is data output of
the subprocess. This example shows how data objects are communicated from
a subprocess activity to its internal process and back.

When the subprocess starts, the order is preprocessed, resulting in a list
of order positions and a data object representing the order header. The list
of order positions serves as input to the Process Order Position activity. As

4.7 Business Process Model and Notation 233

Fig. 4.104. Diagram of the Process Order subprocess from Figure 4.103, involving
data object collections

shown by the marker of this activity, it is a multiple instance activity. With a
data object collection as input, the multiple instance marker indicates that an
activity instance is created for each object in the collection. In our example,
each order position is processed by an individual instance of the Process Order
Position activity.

Once all order positions are processed, the respective data object collection
is created, and the multiple instances activity terminates. Postprocessing of
the order involves assembling the order positions and the order header to
create the order, which is now in the processed state. That data object is
provided to the follow-up activities on the process level as data output, as
shown in Figure 4.103.

Finally, we sketch the execution semantics of data objects in BPMN. Each
process activity is associated with input sets, which contain data objects which
have to be available when the activity starts. Notice that this set can be empty
in case an activity is not associated with any data object. In the example, the
activity Accept Order in Figure 4.103 has one input set containing just one
data object, namely the order data object in the valid state.

In general, however, there might be multiple input sets associated with a
given activity. When sequence flow arrives at the activity, the input sets are
visited. For each input set, the system checks if the data objects are available
in the requested states. The activity can be started, once all data objects
for an input set are available, making sure that an activity can deal with
alternative input data objects.

This approach is illustrated in Figure 4.105, which shows a variant of the
ordering process discussed above. In this variant, a response message is sent
in any case. To realize this behaviour, the Send Response activity has two

234 4 Process Orchestrations

Fig. 4.105. Process diagram involving multiple input sets of an activity

input sets, one of which consists of the order object in state rejected. The
other consists of the same data object in state accepted.

From the discussion of the process it is obvious that these input sets are
alternative. Either the response message contains the information that the
order is rejected or it sends a message that tells the client that the order is
accepted. When control flow enters the Send Response activity, either of the
input sets is available, realizing the intended process behaviour.

Process Instantiation

So far, most aspects of BPMN process diagrams have been covered. Activi-
ties, events, gateways, and sequence flow were introduced and their execution
semantics have been discussed. In formal language theory, the semantics of a
language or grammar determines the meaning of the words, written in that
language. In process languages like the BPMN, the meaning of the process
diagrams—the words of that language—is defined by the behaviours that the
diagram specifies.

For each language construct covered, its execution semantics was discussed.
For example, a sequence flow between two activities restricts their execution
ordering, after an exclusive gateway exactly one option will be chosen, etc.

However, so far we have disregarded the question when a process should
actually be instantiated. This is an important aspect of the execution se-
mantics of a process language. Luckily, the process diagrams discussed so far
always had a single start event. In this case, the instantiation question can
trivially be answered: A process should be instantiated if and when the start
event occurs.

4.7 Business Process Model and Notation 235

The case is more complex for process diagrams with multiple start events.
The BPMN states that start events are alternative. This means that whenever
one start event occurs, a process is instantiated.

Fig. 4.106. Process diagram with multiple alternative start events

Figure 4.106 shows a process diagram with several start events. These
events represent alternative ways of receiving an order. If the order is received
by fax message, the data first needs to be digitalized in the Collect Order
Data activity. Once the data is available in electronic form, it can be entered
in the information system of that company, using the Enter Order Data ac-
tivity. Notice that the order can be immediately entered in the information
system, if it is received by email message. Finally, the order can be processed
immediately after process start, if the order has been issued via a web form.

These alternative ways of receiving an order can be represented by multiple
start events. These start events are alternative, and the process is in line
with their alternative nature, because all start events are merged by exclusive
gateways. Notice that in this example substituting an exclusive gateway with
a parallel gateway would result in a deadlock situation.

However, there are situations which do require multiple start events. The
BPMN reserves a specific element for these situations, shown in Figure 4.107.
In that example, a process is instantiated only if an application is received and
a corresponding vacancy is available. Notice that the availability of a vacancy
is represented by a condition start event. (For illustration purposes, we use
a condition start event here, even though BPMN allows only message start
events). We use the parallel event-based gateway to capture this situation. A
process is instantiated only if all incoming events have occurred.

This example covers another interesting aspect. When multiple start events
are required to start a process, these start events need to be correlated with
each other. Correlation is used to tie events to process instances.

In the concrete example, the Receive application event needs to reference
a vacancy. When there are multiple vacancies and multiple applications re-

236 4 Process Orchestrations

Fig. 4.107. Process diagram with two start events, both of which need to occur to
instantiate the process

ceived, a process can only be started if an application is received and the
vacancy referenced in the application is actually available.

To illustrate this concept, assume vacancies V 1, V 2, and V 3. This means
that condition start events occur only for these vacancies. If an application
is received that references a vacancy that is not available, for example V 4,
then no process instance can be instantiated. If, however, an application is
received which references vacancy V 1, a process is instantiated. This makes
sure that a process is instantiated only if there is an open position available
for the application received.

4.7.3 Collaborating Processes

Business processes involving multiple organizational entities can interact with
each other. The BPMN is not restricted to single-organization business pro-
cesses, but is ready to express business processes of multiple organizations
that collaborate.

As already introduced, pools represent specific process participants or
roles, such as role supplier or role customer. Lanes are used to represent or-
ganizational entities within participants. Typically, top level divisions within
companies are represented by lanes, such as marketing and sales, operations,
and logistics; but more fine-grained organizational entities can also be repre-
sented by sub-lanes, if required by the process.

Sequence flow is allowed within processes only, that is, between nodes that
reside in a single pool. Therefore, sequence flow may cross lane boundaries,
but it may never cross a pool boundary. Communication between processes
can occur only through message flow.

The rationale behind this stipulation is as follows. Sequence flow defines
an execution order of activities in a given process. Within an organization, we
can set up procedures and rules, even a workflow engine, that make sure that
the activities are executed as specified in the process model.

However, we can not ask for a certain execution ordering of activities in a
process of one of our business partners. We can only send a message to our
business partner, which will then influence its business processes. Therefore,
business-to-business communication is handled exclusively through messages,

4.7 Business Process Model and Notation 237

while intra-company communication can be handled directly through sequence
flow.

Fig. 4.108. Business processes collaborating through message flow

Collaborating processes can be represented on different levels of abstrac-
tion. In the most abstract way, only the roles of the partners are represented
and the message flows between them. There is no information about the in-
ternal processes available. Also the ordering of message flow edges from left
to right does not have any meaning.

Figure 4.108 shows a collaboration diagram involving a supplier and a
manufacturer. The diagram does not indicate that first the manufacturer sends
a message to the supplier, even though the left most edge has that orientation.
We can not even conclude from the diagram that the message flow actually
happens. A message send event might be on an optional path, so that not all
process instances actually send a message!

Since we cannot look inside these pools, they are called black box pools.
Collaboration diagrams involving black box pools provide a high level view
by providing roles of participants and message flow that might occur.

An example of a business process with one black box pool and one white
box pool is shown in Figure 4.109. A manufacturer sends an order to its sup-
plier, represented by a message flow from the manufacturer pool to the mes-
sage start event of the supplier. Then an invoice is sent, payment is received,
and the material is sent.

In a typical business-to-business collaboration, business partners commu-
nicate in a structured way by sending and receiving messages. While the
externally visible behaviour of a process that runs in a given organization is
essential for the overall communication, the internal process is not relevant.
Pools can also be used to provide this form of abstraction. The internal struc-
ture of a business process can be abstracted from and, only the externally
visible communication behaviour can be shown.

There are two advantages related to expressing only the externally visible
behaviour. The first advantage is that the information hiding principle is fol-
lowed, so that the complexity of internal business processes does not add to
the complexity of the overall process.

238 4 Process Orchestrations

Fig. 4.109. Collaborating business processes with public process of the Supplier

The second advantage is based on business considerations. Business pro-
cesses are a significant asset of a company, so that the company is not willing
to expose its internal processes to the outside world. Since only the commu-
nication behaviour of a process can be observed from the outside, a process
restricted to its communication activities is called public process.

We can also provide public processes for both communication partners. In
this case, message flows are no longer associated with borders of pools, but
with the actual send and receive tasks. This view provides details about the
communication activities of both collaborating processes. To illustrate this,
Figure 4.110 shows also the communication tasks of the manufacturer and
their process flow.

Fig. 4.110. Collaborating business processes with public processes of both partners

The process of the manufacturer starts by sending an order. The process
continues with concurrent branches. In one branch the manufacturer waits for

4.7 Business Process Model and Notation 239

the ordered material; in the other branch, it waits for receiving the invoice.
After the invoice is received, the payment is sent.

A partner might also choose to expose its complete internal process. This is
done by adding activities and potentially also control structures to its public
process. The resulting process is called private process. A private business
process contains all activities that are enacted within a company; it realizes
a process orchestration.

Fig. 4.111. Collaborating business processes with private processes of both partners

A private business process of the manufacturer shown in Figure 4.111
contains an activity Check Material, so that the manufacturer can check the
material after receiving it. This is a typical example of an activity that is exe-
cuted in the process orchestration of a partner, but which has no implication
on the externally visible behaviour of the process. Therefore, it is part of the
private process, but not of its public process.

So far, each pool represented a single organization, for instance a con-
crete supplier or a concrete manufacturing company. The BPMN also provides
means to express pools that represents multiple organizations that participate
in the process collaboration.

An example involving multiple instance pools is given in Figure 4.112,
where a credit request process is shown. There are three pools in this collabo-
ration, a customer, a credit agency, and a bank. As indicated by the multiple
instances marker in the bank pool, multiple banks participate in this collab-
oration, while only one customer and only one credit agency participate.

The process starts by the customer filling a credit request and sending it
to the credit agency, spawning off a new process instance. The credit agency
requests offers from several banks, represented by the multiple instances sub-
process. In each instance of the subprocess, one offer message is sent to a

240 4 Process Orchestrations

concrete bank, and a response is received from that bank. The subprocess
instances are created concurrently, so that the requests are sent out concur-
rently and the respective messages are collected from the banks, as they come
in.

The BPMN states that the number of multiple instances of a subprocess
matches the number of instances of a multiple instances pool it communicates
with. In our example, the number of subprocess instances that send the request
messages and receive the response matches the number of banks.

Fig. 4.112. Collaborating processes with a multiple instances pool

The process continues as follows. Once all responses are collected or a timer
elapses, an offer is selected and submitted to the customer. If the customer is
still patiently waiting to receive this offer, it does so.

While the BPMN can graphically represent the interaction of business
processes, there are no formal properties defined on the relationship between
a business process and its externally visible behaviour. Correctness criteria for
process choreographies that consist of a set of interacting business processes
are also not part of the BPMN. These aspects will be discussed in the context
of process choreographies in Chapter 5.

4.7.4 Executability and Exchange Format

One of the points of critique regarding earlier versions of the BPMN was the
lack of executable processes, which resulted in the need to translate BPMN
diagrams to executable languages, like WS-BPEL. In the current version,

4.7 Business Process Model and Notation 241

executability is addressed in BPMN, and first process engines that natively
support that standard are available.

Maybe the most important aspect of the BPMN in its current version
is the standardization of the exchange format. By providing XML Schema
definitions for the standard, tool vendors can provide a serialization format
for BPMN diagrams, so that process models can be exported from one tool to
be imported in another tool. This is a very important feature, since it allows
the automatic transfer of process models between tools that are rather on the
domain aspect to tools that are focusing on executable processes.

Bibliographical Notes

Control flow patterns are the building blocks of process orchestrations; they
were introduced by van der Aalst et al. (2003c). A revised version was pub-
lished in Russell et al. (2006). Petri nets were introduced by Petri (1962).
Girault and Valk (2010) published a textbook on Petri nets that investigated
in detail the specification and verification of computer systems.

There are numerous extensions of Petri nets, including the colour exten-
sion reported in Jensen and Kristensen (2009), which looks at modelling and
validation of concurrent systems. van der Aalst and Stahl (2011) provide a
comprehensive approach to modelling processes, based on coloured and hier-
archical Petri nets.

Workflow nets are introduced in van der Aalst (1998) and also in van der
Aalst and van Hee (2004), where organizational aspects and tools are also
addressed. Event-driven process chains are introduced in Scheer (2000). The
application of event-driven process chains is reported in Scheer et al. (2004).
An investigation of the formal semantics of event-driven process chains is given
in Kindler (2004); run time considerations are reported in Cuntz and Kindler
(2005). Investigations regarding the semantics of the or join are reported in
Mendling and van der Aalst (2007) and in Gfeller et al. (2011).

Yet Another Workflow Language is introduced in van der Aalst and ter
Hofstede (2005); the YAWL system is described in van der Aalst et al. (2004).
ter Hofstede et al. (2010) present a comprehensive book about all aspects of
the YAWL language, the YAWL system, and related approaches. Graph-based
workflow languages are introduced in Leymann and Altenhuber (1994) and
Leymann and Roller (1999); workflow applications are considered in Leymann
and Roller (1997).

In the context of flexible workflow management, graph-based workflow
languages, including their technical aspects like handling of application data,
are introduced in Weske (2000). A graph-based workflow language with block
structuring is proposed by Reichert and Dadam (1998). In the context of
the Unified Modeling Language, Activity Diagrams can be used to represent
business processes, as shown in Booch et al. (2005). An early overview of

242 4 Process Orchestrations

workflow languages is given in Forst et al. (1995); Weske et al. (2005) devote
a chapter to workflow language, also discussing service composition languages.

Instantiation of process models is discussed in Decker and Mendling (2009),
where BPMN and other process languages are investigated with respect to
their instantiation semantics.

The BPMN specification is available by the Object Management Group
(2011). A poster explains the key concept of the BPMN in a concise way; more
information can be found in BPM Offensive Berlin (2011). A workshop series
is devoted to the Business Process Model and Notation; workshop proceedings
are available as Mendling et al. (2011) and Dijkman et al. (2011). This notation
is also in the centre of Silver (2011), where practical aspects of BPMN are
discussed.

5

Process Choreographies

The previous chapter discussed how execution constraints between activities
of a given business process can be captured in process orchestrations. How-
ever, dependencies do not exist only between activities of the same process
orchestration, but also between activities of different process orchestrations.
This is the case if they participate in a business-to-business collaboration. To
realize these collaborations, process orchestrations interact with each other,
typically by sending and receiving messages.

Choreographies have a central role in ensuring interoperability between
process orchestrations, each of which is performed by a participant in a
business-to-business collaboration. Several industry initiatives are in place
for establishing standardized choreographies in particular domains. Examples
include RosettaNet for the supply chain domain, SWIFTNet for financial ser-
vices, and Health Level Seven (HL7) for health care services. They all define
rules for the collaboration that companies need to comply with in order to
collaborate with each other.

By introducing collaboration rules, costs for the individual companies are
reduced: interaction behaviour does not need to be agreed upon by every
business partner, but, rather, industry-wide standards serve as reference for
the intended collaboration. New companies can join the market more easily,
since they know the rules of that domain.

These collaboration rules are specified by process choreographies. While
domain-specific process choreography standards are important in their partic-
ular fields, they lack the flexibility to define new types of business-to-business
collaborations that are important for supporting cooperation between compa-
nies in today’s dynamic market environments. Therefore, new approaches for
the definition and implementation of process choreographies are required.

The goal of this chapter is introducing a common understanding of the
concepts used in process choreography design and implementation and on
the steps that are required to develop choreographies. This chapter is orga-
nized as follows. Section 5.1 looks at the motivation for process choreographies
and introduces terminology. Choreography design phases are investigated in

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 5,
© Springer-Verlag Berlin Heidelberg 2012

243

http://dx.doi.org/10.1007/978-3-642-28616-2_5

244 5 Process Choreographies

Section 5.2. The actual design of process choreographies is addressed in Sec-
tion 5.3, while their implementation is discussed in Section 5.4.

Process choreographies are composed of sets of individual interactions. Ser-
vice interaction patterns have been introduced to provide a set of recurring
interaction types. These important building blocks for process choreographies
are studied in Section 5.5. A particular process choreography language is in-
troduced in Section 5.6.

5.1 Motivation and Terminology

In today’s business scenarios, companies increasingly join forces to combine
their services and products to provide added-value products to the market.
These products are typically realized by business processes, which in many
cases take advantage of the existing software infrastructures of the participat-
ing companies.

Because business-to-business collaborations are quite complex, and any
failure in the collaboration might have an immediate effect on the operational
business of the company, the cooperation between companies should be de-
signed very carefully. Process choreographies can be used for this endeavour.

The requirements of process choreography development depend on the
number of interacting partners and the desired level of automation. In business
environments, where the cooperation of business partners is realized through
traditional means like fax messages being sent and read and understood by
humans, where humans can pick up the phone and settle any ambiguities,
detailed and formal process choreographies are not essential.

However, if the cooperation is to be realized—at least in part—by infor-
mation systems, so that a high level of automation is achieved, there need
to be unambiguous models that specify in detail the nature of the collabo-
ration of business partners in the context of a process choreography. These
considerations are illustrated by an example.

Consider a bidding scenario in which the owner of a car uses an auctioning
service to sell his car to the highest bidder. Potentially, thousands of people
can participate in the auction and place their bids. Such scenarios require
agreement on how the participants need to interact with each other in order
to avoid problems that could appear as the result of wrong interaction.

To illustrate the problems that could arise from erroneous interaction,
consider a collaboration involving process orchestrations run by two compa-
nies. The process orchestrations, including the interaction by message flow,
are depicted in Figure 5.1.

The business process of Company 1 can only be initiated by the receipt
of a message. This message can only be sent by activity B2 of the business
process of Company 2. B2 in turn can only be performed after A2 is com-
pleted. However, A2 waits to receive a message from activity C1 to be sent by
Company 1. As a result, both process orchestrations cannot proceed: they are

5.1 Motivation and Terminology 245

Fig. 5.1. Deadlock of interacting process orchestrations

stuck in a permanent deadlock situation. To avoid these kinds of problems,
the partners involved in a process choreography need to agree on the process
choreography.

Fig. 5.2. MOF levels of process choreographies

Each of the process orchestrations shown in Figure 5.1 exposes a valid
behaviour if considered on its own. The behaviours are valid because each
process instance will perform a set of activity instances before it completes.
Deadlock situations, infinite loops, and other types of undesired behaviour
cannot appear.

The problem encountered is due to links between send and receive activities
in the process orchestrations. As the example illustrates, the viewpoint of

246 5 Process Choreographies

an individual process orchestration does not suffice for reasoning about the
interaction between process orchestrations; a global view on the interactions
between process orchestrations is required.

The levels of abstraction found in process choreographies are shown in
Figure 5.2, where the Meta Object Facility levels are shown with the respective
artefacts. At the metamodel level, the Process Choreography Metamodel is
shown which provides the concepts to express Process Choreographies at the
model level.

Concrete instances of process choreographies are called Process Conver-
sations, which appear at the instance level. A Process Choreography Lan-
guage provides constructs to express process choreographies based on a pro-
cess choreography metamodel.

While Figure 5.2 shows the overall organization of the artefacts in process
choreographies, a detailed investigation of the artefacts and their relationships
is required. The core artefacts involved in process choreographies and their
relationships are shown in Figure 5.3. This figure is similar to the process
metamodel shown in Figure 3.16 on page 93, because it represents the model
level and the instance level.

Fig. 5.3. Process choreography conceptual model

In the conceptual model of process choreographies shown in Figure 5.3, on
the right-hand side the concepts at the model level are shown: each Process
Choreography is composed of a set of Interaction Models.

Each interaction model is associated with two objects of the class Commu-
nication Activity Model. Communication activity models are activity models
in process orchestrations that exhibit a communication behaviour by send-
ing or receiving messages. For the time being we focus on simple interactions
involving two activities.

5.2 Development Phases 247

As with process orchestrations, we can distinguish between models and
instances. The instance level is shown on the left-hand side in Figure 5.3,
covering the concrete message exchange between interacting process instances.

The term Process Conversation refers to the concrete messages that are ex-
changed as specified in a given process choreography. Therefore, process chore-
ographies serve as conversation models. Each process conversation consists of
a set of Interaction Instances, each of which is the concrete realization of a
message exchange as specified by the associated interaction model. Each inter-
action instance is associated with Communication Activity Instances, which
are the concrete activity instances that send and receive messages.

5.2 Development Phases

This section introduces the development of process choreographies, guided by
phases. The main goal of this section is to provide an understanding of the
concepts and artefacts involved in the design of process choreographies, rather
than on providing a reference methodology for choreography design.

The phases involved in the development of process choreographies are
depicted in Figure 5.4. These phases are organized into design phases and
implementation phases, shown in the upper and lower part of that figure,
respectively. There are three associated roles that represent the stakeholders
involved in choreography design and implementation. Based on the discussion
of these roles in Section 1.2, their specific responsibilities in the context of
process choreographies are highlighted.

Business engineers are mainly involved in the choreography design phases,
including scenario modelling, domain scoping, milestone definition, and par-
ticipant identification. Business engineers are responsible for business-related
aspects of the process choreography; they need to make sure that the collab-
oration contributes to the goals of the enterprise, similarly to organizational
business processes.

System architects are responsible for the architectural aspects of the imple-
mented process choreography. System architects are at the border of design
and implementation, as sketched in Figure 5.4. This means that they are
involved in the design of process choreographies as well as in their implemen-
tation. In particular, they are involved in the specification of the behavioural
interfaces, discussed later in this chapter.

Once the process choreography design is completed, developers are re-
sponsible for realizing the process orchestrations in a way that the overall
business-to-business collaboration as specified in the process choreography is
realized. Behavioural interfaces are important artefacts for designing the in-
dividual process orchestrations.

Based on this discussion of the stakeholders in process choreography design
and implementation, the phases are sketched.

248 5 Process Choreographies

Scenario modelling is at the heart of choreography design: scenarios de-
scribe the overall setting and goals of the process choreography. They are also
useful for integrating the results of the other design phases. To model a par-
ticular scenario, a domain in which the cooperation will take place needs to
be specified. This is performed during the domain scoping phase by business
engineers.

Formal notations are not required in scenario modelling and domain scop-
ing, so that the scenario and the domain can be described in a language that
allows expressing the relevant concepts. Depending on the specific setting of
the project, plain English text enriched with informally specified graphical
diagrams can be used.

Fig. 5.4. Phases during choreography design and implementation

The participant identification phase is devoted to defining different roles
of choreography participants. There are two options for doing this. These
roles are specified in a way that allows for the selecting of concrete process
participants on the basis of their properties as laid out in the participant roles.

In the context of process choreographies, the term process participant
refers to an organization, rather than to an individual. For instance, the role
shipper can be played by multiple shipping companies, all of which are ap-
propriate for participation in the process choreography.

5.3 Process Choreography Design 249

In the milestone definition phase, the participants define certain states of
the choreography in which the cooperation has achieved certain results, typ-
ically characterized by intermediate products. These states are called mile-
stones. Milestones and their ordering describe behavioural aspects of the
choreography from a high level of abstraction.

In the message identification phase, the interactions in the scenario are
used to identify and design messages that realize the various interactions. This
phase has business aspects as well as technical aspects; it is therefore located
on the border of the design and implementation of process choreographies.
The design aspects include the business content of the messages, while the
implementation aspects include the technical realization of these messages
and concrete message formats.

Finally, the choreography definition phase combines the message identi-
fication and the milestone definition phases of the modelled scenario. The
result of this phase is a detailed specification of the interactions between the
participants, the messages to realize the interactions, and the milestones that
are reached during the resulting conversation in the instance layer.

The choreography definition phase, just like the message identification
phase, includes business aspects as well as technical aspects. Unsuccessful
interaction behaviour would arise if, for instance, message formats were used
that one or more participants would not understand. To avoid this problem,
it is assumed that message formats as well as the semantics of the messages
are agreed upon by the participants.

Domain standards, like the ones mentioned above, are in place to pro-
vide a common terminology, and, thereby, an understanding of the concepts
used. These standards are enhanced with technical information, so that data
structures and message formats are available. Business engineers, system ar-
chitects, and developers participate in choreography definition and message
identification.

In the lower part of Figure 5.4, the phases during implementation of
process choreographies are shown. Based on the choreography definition, be-
havioural interfaces of all roles in the process choreography are defined. Be-
havioural interfaces serve as blueprints for the design of the individual process
orchestrations realized by the participants of the process choreography.

5.3 Process Choreography Design

The design of process choreographies involves a series of activities. In each
of these activities, artefacts are developed. These activities are described as
follows:

1. High-level Structure Design: In high-level choreography design, the partic-
ipant roles as well as their communication structures are identified. High-
level structure design is conducted during the Participant identification
phase.

250 5 Process Choreographies

2. High-level Behavioural Design: High-level behavioural models specify the
milestones of the collaboration and the order in which the milestones
are reached. High-level behavioural design is done during the milestone
definition phase.

3. Collaboration Scenarios: High-level choreographies are refined by intro-
ducing dedicated collaboration scenarios that relate the reaching of mile-
stones to the communication between process participants. Collaboration
scenarios are developed during the choreography definition phase, based
on the scenarios informally specified during scenario modelling.

4. Behavioural Interfaces: From these collaboration scenarios, for each par-
ticipant role, a behavioural interface is derived.

5.3.1 High-Level Design

High-level process choreography design involves structure design and be-
haviour design. In high-level structure design, participant roles of the chore-
ography are defined, as part of the participant identification phase. Figure 5.5
shows a high-level structure diagram for participants involved in a bidding
scenario. This diagram identifies a seller, an auctioning service, and multiple
bidders as participants. It also shows that these participants are pairwise in-
terconnected. Therefore, any participant can interact directly with any other.

Fig. 5.5. High-level structural model of participants in bidding scenario

High-level behaviour design uses milestones that are achieved during the
collaboration; it is therefore part of the milestone definition phase. Each mile-
stone represents a state in the overall collaboration that has a business mean-
ing, represented by some business value. Milestones correspond to subgoals
reached during the collaboration on the way to reaching its ultimate goal.

For instance, the ultimate goal in the bidding scenario is that the offered
goods are sold, paid for, and delivered to the bidder with the highest bid. Sev-
eral intermediate steps can be distinguished: the initial setup of the auction,
the entry of potential bidders into the auction, the actual bidding process,
and the delivery and payment.

Each milestone can be identified by an expression that describes the state
reached in that milestone. The milestones of (a part of) the bidding sce-
nario are depicted in Figure 5.6, where expressions like Auction is set up and

5.3 Process Choreography Design 251

Bidding phase is over are used. These expressions indicate states during the
collaboration that have a business meaning.

In that figure, milestones are defined by circles, where the initial milestone
has a single border, the intermediate milestones have double borders, and the
ultimate goal milestone has a bold border. This notation follows the BPMN,
where start events, intermediate events, and end events are drawn in the same
manner. Mapping milestones to events is valid, because reaching a milestone
effectively realizes an event. For instance, the completion of the bidding phase
can be represented by an event Bidding phase is over, as shown in Figure 5.6.

Fig. 5.6. High-level behavioural model for bidding scenario, represented by mile-
stones

Milestones have dependencies with respect to other milestones. For in-
stance, the auction has to be set up before the bidding process can be fin-
ished. During the bidding scenario, first the auction is set up, defining the
first milestone, Auction is set up. The next milestone, Bidding phase is over, is
reached when the bidding phase completes. Then there is an and split gateway,
so that the next milestones Goods are delivered and Payment is completed,
can be reached concurrently. If both milestones are reached, the auction can
complete, reaching the final milestone, Auction has finished successfully.

It might also happen that a milestone is not reached in a certain conver-
sation. This situation occurs in the bidding scenario, for instance, if no single
bid is placed during the auction. In this case, delivery and payment cannot
occur, and the conversation ends without the final goal being reached. This
negative outcome can be modelled by introducing new milestones, reflecting
the positive and negative outcome of the bidding phase, respectively. This
diagram is shown in Figure 5.7.

5.3.2 Collaboration Scenarios

Having identified the collaboration milestones, collaboration scenarios can be
addressed, as part of the choreography definition phase. In this phase, the
interactions needed to proceed from one milestone to another are specified.

252 5 Process Choreographies

Fig. 5.7. High-level behavioural model for bidding scenario, with different outcomes

One or several collaboration scenarios show the interactions and their depen-
dencies that need to occur between two milestones. To this end, interactions
between process participants serve as the building blocks for the resulting
collaboration scenarios.

Fig. 5.8. Collaboration scenario: reaching milestones through interactions

Scenarios should be kept small, as it is easier to reach agreement on less
complex interaction behaviour. Additional scenario models might be intro-
duced to deal with special cases and exceptions.

Figure 5.8 depicts the initial part of the bidding choreography, where the
first intermediary milestone Auction is set up is reached. An Auction creation
request initiates the conversation and, if not registered with the auctioning
service yet, the seller needs to be registered. Once the Auction creation con-

5.3 Process Choreography Design 253

firmation message is received by the seller, the Auction is set up milestone is
reached.

Notice that the Auction is set up milestone is the final milestone in this col-
laboration scenario. Therefore, it is drawn in bold in Figure 5.8. However, this
milestone is an intermediate milestone in the high-level behavioural model, so
that it is drawn with a double border in Figure 5.6.

This example uses control flow patterns to express the relationships be-
tween the interaction models. To this end, the interaction models between
participants can be represented as a specific kind of process, in which the
building blocks are interaction models, rather than business process activi-
ties, as in process orchestrations.

Although scenario models define control flow between interactions, the
concrete message structures have not been addressed yet. Data interoperabil-
ity is an important aspect in process choreography projects. Therefore, data
models including possible data transformation rules need to be added. Once
these aspects are defined in sufficient detail, all artefacts are aggregated in
the final process choreography.

While the collaboration scenario depicted in Figure 5.8 shows the mile-
stones and the resulting interactions, as well as their dependencies, the inter-
faces of the individual participants need to be specified; these specifications
are called behavioural interfaces. A behavioural interface covers the individ-
ual view of one specific participant in the process choreography; the internal
aspects of the own process orchestration, as well as the interactions involving
only other participants, are disregarded.

Fig. 5.9. Behavioural interface for seller

Figure 5.9 shows the behavioural interface for the seller in the auctioning
scenario. Behavioural interfaces consider parts of process orchestrations that
exhibit externally visible behaviour, for instance, communication activities
and events that represent the sending or receiving of a message.

254 5 Process Choreographies

5.3.3 Compatibility

Process choreography design needs to ensure that the process orchestrations of
the participants play together well in the overall collaboration. Compatibility
is the ability of a set of participants to interact successfully according to a
given process choreography.

Unsuccessful interaction behaviour could arise, if, for instance, different
message formats were used in a collaboration and one participant does not
understand the content of a message sent by another participant.

Another source of incompatibility—which this section will focus on—is due
to wrong and misaligned interactions. If, for instance, a participant expects
a notification at some point in its process before it can proceed, and none
of the other participants sends such a notification message, then the process
cannot continue, so a deadlock situation emerges. Compatibility of interacting
processes aims at avoiding this type of undesired behaviour due to erroneous
interactions between process orchestrations.

Fig. 5.10. Interactions of participants in auctioning scenario

The bidding example illustrates the different aspects of compatibility in-
troduced in this section. Figure 5.10 shows an auctioning scenario with three
participants involved. A potential bidder must be accepted for participation
before she can place her bid. Therefore, the bidder first needs to send a Par-
ticipation request to the auctioning service.

As a response, the auctioning service can send an Acceptance notification
or a Rejection notification. In some cases, the seller is requested to make the
final decision on whether a bidder can be accepted. In order to perform this
interaction, the auctioning service forwards the request of the bidder to the
seller. It might also give a recommendation for accepting the bidder. The seller
can send a notification about his decision back to the auctioning service.

5.3 Process Choreography Design 255

The auctioning scenario depicted in Figure 5.10 represents the participants
by pools that interact by sending and receiving messages. However, the figure
does not show any behavioural dependencies between the different message
exchanges. Nevertheless, compatibility can be investigated based on this high-
level representation of the scenario.

Since only the structure of the interaction is taken into account, we refer to
it as structural compatibility. This property of a process choreography comes
in two flavors. Strong structural compatibility is given if, for every message
that can be sent there is a participant who can receive it, and if for every
message that can be received, there is a participant who can send it. Because
each message flow connects exactly two participants in Figure 5.10, strong
structural compatibility is satisfied in this example.

Fig. 5.11. Alternative auctioning service results in weak structural compatibility

Weak structural compatibility is given if all messages sent by participants
can be received by other participants. However, it is not required that all
messages that participants can ever receive will actually be sent by other
participants.

Since the individual process orchestrations have in most cases been de-
veloped independently of each other, a complete structural match between
participants cannot always be achieved. The occurrence of weak structural
compatibility is more likely. In this case, all messages sent can be received,
but it is not required that for every message that can be received there be a
participant who can actually send such a message.

The rationale behind this definition is that the interaction can take place,
even though some participants are able to receive additional messages. It is
assumed that these messages are not essential for the overall process choreog-
raphy. This will be discussed in more detail below.

In an alternative setting, a new auctioning service, for example, always
forwards the request by the bidder to the seller without providing recom-
mendations. In this case the seller will never receive any recommendation.
However, if these recommendations are not essential for the seller process or-

256 5 Process Choreographies

chestration, as the example indicates, the cooperation can still be successful.
This example is shown in Figure 5.11, disregarding the bidder, who remains
unchanged.

Unlike structural compatibility, behavioural compatibility considers be-
havioural dependencies, that is, control flow between interaction instances of
a conversation. Therefore, the process orchestrations of the interacting part-
ners are interconnected, and the resulting process structure is analyzed. Such
analysis requires a formal, unambiguous representation.

In an approach for checking behavioural compatibility by Martens (2003b),
process orchestrations are represented by a specific class of Petri nets, namely
workflow modules. Workflow modules are basically workflow nets with addi-
tional communication places that are used to represent message flow between
participants.

Whenever a participant sends a message, the process orchestration of that
partner features a transition with an output communication place that can
hold messages sent. At the receiver side, the workflow module requires a
matching input communication place. This place is an input place of the
transition that receives the message.

Each process orchestration is represented by a workflow module that de-
fines its internal behaviour and its external communication behaviour. Work-
flow modules are defined as follows:

Definition 5.1 A Petri net PN = (P, T, F) is a workflow module if and only
if the following conditions hold:

• The set of places P is partitioned into sets PN of internal places, P I of
incoming places, and PO of outgoing places.

• T is a nonempty set of transitions.
• The flow relation F is partitioned into an internal flow relation FN ⊆

(PN ×T)∪ (T ×PN) and a communication flow relation FC ⊆ (P I ×T)∪
(T × PO).

• (PN , T, FN) is a workflow net.
• There is no transition t connected to both an incoming place and an out-

going place.

�

Figure 5.12 shows workflow modules for the participants Auctioning Service 1
and Seller. For presentation purposes, the workflow modules represent only a
small part of the auctioning and seller process orchestrations.

The process fragment of the auctioning service considered sends a recom-
mendation to either accept or reject the bidder. It is then able to receive either
an acceptance or a rejection message. The seller can receive a recommendation
message before sending either a rejection message or an acceptance message.

Note that workflow modules are not workflow nets, because in workflow
nets each place and each transition is on a path from the initial node to the
final node. In workflow modules this is not true, because communication places

5.3 Process Choreography Design 257

Fig. 5.12. Workflow modules as basis for checking compatibility

by definition have either no incoming edges (places for receiving messages) or
no outgoing edges (places for sending messages).

For instance, place ra of the auctioning service in Figure 5.12 has no
outgoing edge and place ra of the seller has no incoming edge. Because in
workflow nets only the initial place can have no incoming edge and only the
final place can have no outgoing edge, workflow modules are not workflow
nets.

Interaction activities are represented by transitions in workflow modules.
Sending transitions are marked with an exclamation mark followed by an
identifier of the message sent. For instance, !rec accept marks the transition
that sends a recommendation for accepting the new bidder.

Transitions that model activities that receive tokens are marked by a ques-
tion mark followed by an identifier of the message received. For instance, re-
ceiving an accept recommendation message by the seller is represented by the
transition ?rec accept.

The sending of the message is represented by the firing of the transition.
When !rec accept fires, a token is put on the communication place ra. This
communication place represents an outgoing message of the auctioning service.

Communication places act just as normal places in Petri nets. A transition
with a communication place as an input place is enabled only if there is a
token in that place. Thereby, message flow can be represented properly. The
receiving transition can only be performed if a message has arrived.

The workflow module approach requires strong structural compatibility of
the workflow modules. Therefore, there need to be corresponding places for
all communication places in each module. In the next step, the corresponding
communication places are merged, and a new initial place and a new final
place are added.

258 5 Process Choreographies

Fig. 5.13. Workflow net as composition of workflow modules

As a result, the workflow modules are merged in such a way that a Petri
net results, as shown in Figure 5.13. This Petri net is a workflow net because,
following Definition 4.8, there is one dedicated initial place and one final place,
and each node is on a path from the initial place to the final place.

Although the resulting structure is a workflow net, the composition of the
workflow modules is not satisfactory. Consider a process instance in which the
auctioning service recommends accepting the bidder, while the seller decides to
reject the bidder. In this case, there is a token in the communication place sr,
and a token in place p of the auctioning service. The process choreography is in
a deadlock, because neither the ?accept transition nor the ?reject transition of
the auctioning service is enabled. The reason for this situation is the structure
of the auctioning service.

Figure 5.14 shows that an updated version using Auctioning Service 1’
does not suffer from this problem.

Figure 5.15 depicts a larger part of the collaboration, where buyers can
request permission to the auction. The figure shows the behavioural interfaces
of the buyer, the auctioning service, and the seller.

The behavioural interfaces of the roles and their relationships are explained
as follows. The buyer places a participation request at the auctioning service,

5.3 Process Choreography Design 259

Fig. 5.14. Workflow modules that are compatible

represented by a !participation req transition that puts a token in the com-
munication place pr of the buyer. This token represents the actual message
sent from a buyer to an auctioning service.

The interactions between the auctioning service and the seller has been
discussed above. The auctioning service sends a recommendation to the seller,
who receives it. Then the seller decides on accepting the buyer and sends the
respective message to the auctioning service, who forwards it to the buyer.

While this specification describes the interaction between the participants
of a conversation, it also allows extending the internal processes of the individ-
ual participants. The auctioning service could, for instance, look up historical
data about the buyer before proposing a recommendation and sending it to
the seller. The seller could also have an internal decision making process in
place, possibly spanning different organizational units, to accept or reject a
buyer request.

No matter how the internal processes of the participants look like, we need
to make sure that these internal processes are in line with their behavioural
interfaces. Ensuring this is a challenging task when dealing with a large num-
ber of participants in an auctioning scenario involving, for instance, hundreds
of potential buyers, several auctioning services, and dozens of sellers.

260 5 Process Choreographies

Fig. 5.15. Behavioural interfaces: getting a participation permission

The approach based on workflow modules will be investigated in more
detail in Section 6.6 in the context of weak soundness, because this specific
correctness criterion was established in the context of choreography design.
Further approaches are mentioned, with their references in the bibliographical
notes at the end of this chapter.

5.4 Process Choreography Implementation

After discussing the design of process choreographies, this section looks at the
implementation of choreographies. Behavioural interfaces serve as blueprints
for the internal realization of process orchestrations, because each process or-
chestration needs to expose an externally visible behaviour that was specified
as the behavioural interface of the respective participant.

Assume that there is a set of behavioural interfaces compatible with each
other. These interfaces can now be refined to local process orchestrations. In
local process orchestrations, activities can be added or, in some cases, even
reordered, while the observable behaviour has to be preserved.

The relationship between the behavioural interface and the local process
orchestration needs to be investigated, so that the correctness of the overall
collaboration can be achieved. Each local process orchestration needs to be

5.4 Process Choreography Implementation 261

consistent with the respective behavioural interface definition. This section
will introduce consistency criteria using a business-to-business collaboration
scenario.

Figure 5.16 provides an overview of the participants in that scenario: a
Buyer—for instance, a car manufacturer—uses reverse auctioning for procur-
ing specific components. To ease the selection of an appropriate Seller and
to manage the auction, the buyer outsources these activities to a dedicated
Auctioning Service. A Shipper is selected to transport the ordered goods from
the seller to the buyer.

As in the example discussed above, the auction is not public, so that only
registered parties can participate. Since it is a reverse auctioning scenario,
sellers need to request permission to participate in the auction beforehand.
Once the auction has started, sellers can place their bids. When the auction
completes, the buyer selects a seller according to the lowest bid or according to
some other evaluation criterion. Finally, the goods are shipped and payment
is processed.

In this sample scenario, there are two alternatives for selecting a shipper:
either the selected seller determines the shipper that would deliver the goods to
the buyer, or the seller provides a list of shippers with different transportation
costs and quality levels, from which the buyer can choose a shipper.

Fig. 5.16. Participant roles with compatibility and consistency relations in a reverse
auctioning scenario

As shown in Figure 5.16, there can be several sellers, shippers and—in a
generic setting—multiple buyers and auctioning services. In this figure, each
participant role is specified by a set of its behavioural interfaces, as discussed
in the previous section. These interfaces need to be compatible with each
other, so that the collaboration can be successful.

262 5 Process Choreographies

Each participant role can be potentially played by several process partic-
ipants. Each of these process participants develops a process orchestration.
These process orchestrations need to be consistent with the behavioural in-
terface of the participant role. For instance, the process orchestration of seller
Se1 needs to be consistent with the behavioural interface of the Seller role.

Using consistency rules, each participant can check locally whether its
local business process orchestration fits its behavioural interface. If the be-
havioural interfaces are compatible with each other and if, in addition, for
each participant, the internal business process orchestration is consistent with
the respective behavioural interface, then a successful collaboration between
the process participants is realized—additional checks involving the internal
business process orchestrations of the participants are then not required.

Fig. 5.17. Alternative implementations for buyer role

The behavioural interface of a participant role leaves room for multiple
process orchestrations, that is, there are multiple process orchestrations con-
sistent with a given behavioural interface.

5.4 Process Choreography Implementation 263

In order to illustrate this, Figure 5.17 presents three process orchestrations
for the buyer role in the reverse auctioning example, namely B1, B2, and B3.
While the structure of the process orchestrations is at first sight similar to the
behavioural interface, there are subtle differences between them.

First of all, the process orchestrations for participants B1 and B3 contain
additional internal activities. In B1, the buyer maintains a blacklist, consisting
of sellers that have not been recommended for acceptance by an auctioning
service. In B3, the received recommendation is stored in any case, represented
by the Store recommendation transition. Before the buyer decides whether to
accept a seller, the historical data is consulted, represented by the Look up
historical data transition.

Buyer B1 has the same set of communication places as the behavioural
interface of the Buyer role, but different control flow. B2 and B3 have differ-
ent communication places than the behavioural interface. The question now
is whether any of these implementations is consistent with the behavioural
interface of the Buyer role.

The answer to this question depends on the consistency notion in place.
By common sense we can argue that all three local process orchestrations
are consistent with the behavioural interface of the buyer: B1 stores negative
recommendations in a blacklist, and it always follows the received recom-
mendations sent by the auctioning service. This realizes a behaviour that is
consistent with the interface, although not all possibilities of the buyer inter-
face are realized: B1 does not decide about accepting a seller on its own but
always follows the recommendation received.

Buyer B2 accepts every seller, so that the recommendations received are
discarded. We can argue that the behaviour of B2 is consistent with the buyer
interface, although not all behaviours are possible, that is, B2 cannot reject
a seller.

B3 stores the recommendation received and makes an independent decision
about accepting a seller. We can argue that this behaviour is also consistent
with the buyer interface, because B3 can communicate as specified, at least
regarding recommendation and decision messages. However, B3 is not able to
receive a notification message. If we assume that this message is not essential
then also B3 is a valid implementation of the buyer interface.

This discussion shows that the decision on whether an implementation is
consistent with a behavioural interface is subject to consistency criteria.

Consistency Criterion: Public-to-Private Approach

The public-to-private approach defines a consistency criterion. It is based on
Petri nets and uses notions of behavioural inheritance to characterize the rela-
tionship between a behavioural interface and a private process orchestration.

While we do not cover the formal details of the approach in this book,
we introduce its essence. First, the partners agree on a choreography, which

264 5 Process Choreographies

is defined as a Petri net. The net is partitioned among the partners, defining
the responsibilities of the partners regarding the overall choreography.

The partition of each partner defines its behavioural interface, that is,
the public process of the partner. This public process can be enhanced to
implement a private process orchestration. The refinement of a public pro-
cess to realize a private process can only be done by a set of transformation
operations, which are graph operations on the Petri net.

• Loop: By adding a loop with start place and end place of the loop being
exactly one place in the public process, the process can be transformed.

• Detour : An edge in the Petri net can be substituted by a subnet, which
implements a detour of the original flow, defined in the public process.

• Concur : A concurrent branch can be added by designing a subnet which
is spawned concurrently to the original flow, later to be synchronized with
the flow.

Fig. 5.18. Loop transformation operation of the public-to-private approach

It has been shown that applying only these transformation operations does not
change the externally visible behaviour of the process. The resulting private
process is a specialization of the public process. It has also been shown that
combining the private processes of the partners will result in a correct and
sound overall process choreography. As a result, all private processes that
can be derived from a given public process using only the transformation
operations are consistent with the public process.

Technically, the approach is based on branching bisimulation. According
to this equivalence notion, two processes are branching bisimilar, if they can
mutually simulate each other’s behaviour, that is, if one process can do ev-
erything that the other process can do and vice versa.

The approach disregards locally added activities of the private process.
These activities are called silent activities.

5.4 Process Choreography Implementation 265

An example of a loop transformation is shown in Figure 5.18, where the
loop can be taken after receiving either recommendation. The private process
is composed of the public process and the local refinement, generated by
the transformation operation. The loop consists of a subprocess containing
activities for looking up seller data, checking further information about the
seller, consolidating the results and, finally, taking a decision.

The loop has the character of a while loop, since it can be iterated zero or
more times. From this example, it is also clear that the behavioural interface of
the process is not changed by that operation. All communication operations—
those that receive or send messages—and their behavioural constraints are
unchanged.

Fig. 5.19. Detour transformation operation of the public-to-private approach

Figure 5.19 shows the detour transformation. One edge of the Petri net
is exchanged by a detour. In the example shown, the detour consists of a
single activity only, an activity for storing the received notification. In general,
the detour may consist of a more complex net structure. As for the other
transformation operations, the added subnet needs to be sound. This means
that there are neither deadlocks nor lack of synchronization. Soundness is
investigated in detail in the next chapter.

Figure 5.20 shows the concur transformation operation. The buyer sets
up a seller account after sending an acceptance message. In a more general
setting, the added parts of the private process can be performed concurrently
to other parts of the process, which is indicated by the parallel split behaviour
of the !accept transition.

The architecture of the public-to-private approach fits nicely to the archi-
tecture of behavioural interfaces and local process orchestrations, shown in
Figure 5.16. The behavioural interfaces are the public processes of the part-
ners, while the process orchestrations are the private processes of the partners.

266 5 Process Choreographies

Fig. 5.20. Concur transformation operation of the public-to-private approach

For each behavioural interface definition, there can be multiple private pro-
cesses. In the public-to-private approach, these private processes can only be
designed by applying the transformation operations.

To conclude this section, we discuss whether the alternative implementa-
tions shown in Figure 5.17 are—according to the public-to-private approach—
consistent with the behavioural interface of the buyer.

Using the terminology of the public-to-private approach, the question is
answered whether the private processes of buyers B1, B2, or B3 are consistent
with the public process of the buyer. For convenience, we denote the public
process of the buyer by B.

B1 cannot be derived from the public process of the buyer using the trans-
formation operations only. This is not surprising, since B1 cannot behave like
B can behave. In particular, B1 cannot send an acceptance message after re-
ceiving a rejection recommendation, although this is a legal behaviour of B.
Therefore, B1 is not consistent with B.

B2 does not even have the same set of transitions that B has. We would
need a delete operation to derive B2 from B. Since there is no delete operation,
B2 cannot be derived from B. B2 does not expose the complete behaviour of
B, since, for example, B2 can never send a rejection message. For the same
reason, B3 is not consistent with the public process of the buyer. B3 can not
receive a notification message.

This discussion illustrates that the public-to-private approach is based on
a strict notion of equivalence, namely branching bisimulation. On the other
hand, it makes sure that the combination of the private processes still exposes
correct behaviour.

5.5 Service Interaction Patterns 267

On the other hand, there are quite complex extensions possible with this
approach. To illustrate this claim, Figure 5.21 shows the private process of a
buyer, with the combined transformation operations applied.

Fig. 5.21. Private process that—according to the public-to-private approach—is
consistent with the public process of the buyer

Despite the relative complexity of that private process, we can argue that
it exposes exactly the same behaviour as the public process of the buyer role.
Notice that branching bisimulation disregards silent activities. The process
starts by receiving a recommendation message. Then either a message is sent
or a loop is iterated. If an acceptance message is sent, a seller account is set
up. In any case, a notification is received, stored, and the process terminates
properly.

For further details on consistency in process choreographies in general
and the public-to-private approach in particular, the reader is referred to the
bibliographical notes of this chapter.

5.5 Service Interaction Patterns

In Chapter 4, control flow patterns have been introduced that describe control
flow in process orchestrations. However, there are several differences between
process orchestrations and process choreographies that need specific consider-
ation: choreographies are based on message exchange, and potentially many
participants interact in a choreography, while orchestrations are based on
control flow between the activities of a single process performed by a single
organization.

268 5 Process Choreographies

Service interaction patterns aim at filling this gap by proposing small gran-
ular types of interactions that can be combined to process choreographies. As
with control flow patterns for process orchestrations, service interaction pat-
terns can also be used to benchmark languages for their ability to express
advanced conversations. Service interaction patterns can be classified accord-
ing to the following schemes.

• Number of participants involved : Bilateral interactions involve two partic-
ipants, whereas multilateral interactions involve more than two partici-
pants.

• Number of messages exchanged : Single transmission versus multi-trans-
mission interactions.

• Variations in message receiver : In case of two-way interactions, round-trip
interaction means that the receiver of the message is necessarily the same
as the sender, whereas routed interaction means that the receiver of the
message in general differs from the sender.

The BPMN is used to provide graphical representations of service interaction
patterns. Since this notation is not specifically tailored to the needs of service
interaction patterns, the graphical representations of the patterns are not
complete. Together with the textual representation of the patterns, the service
interaction patterns are described properly.

Send

The send pattern represents a one-way interaction between two participants
seen from the perspective of the sender. There are different flavours of this
pattern, considering, for instance, the moment when the sender selects the
receiver: The receiver is known either at design time of the choreography or
only during the execution of a conversation.

Fig. 5.22. Send pattern

5.5 Service Interaction Patterns 269

Figure 5.22 illustrates an example where a phone provider notifies a cus-
tomer that her prepaid credit will expire in 10 days. The participants are
represented by pools; the send pattern is realized by a send task. The binding
time (design time or run time) is not expressed in this diagram.

Receive

The receive pattern also describes a one-way interaction between two partic-
ipants, but this time seen from the perspective of the receiver. In terms of
message buffering behaviour of the receiver, two cases can be distinguished.
Messages that are not expected are either discarded or stored until a later
point in time, when they can be consumed.

Fig. 5.23. Receive pattern

In the example shown in Figure 5.23 the facility management department
of a company receives a notification that the heating system in a building
does not work properly. The receipt of the message is represented by a start
message event. On occurrence of this event, a process orchestration is started
in the facility management that checks the heating system and tries to find
the source of the problem.

Send/Receive

In the send/receive pattern, a participant sends a request to another par-
ticipant who then returns a response message. Both messages belong to the
same conversation. Since there could be several send/receive interaction in-
stances happening in parallel, corresponding requests and responses need to
be correlated.

If, for instance, a procurement department requests quotes for different
items from different suppliers, the different request/response pairs belong to

270 5 Process Choreographies

Fig. 5.24. Send/receive pattern

different conversations. In this situation the procurement department must be
able to tell which quote belongs to which request.

Therefore, correlation information must be placed inside the messages.
For instance, the request could carry a request identifier which is then also
contained inside the response message. This example is shown in Figure 5.24.

Racing Incoming Messages

Racing incoming messages are common in business-to-business scenarios; this
pattern is described as follows: a participant is waiting for a message to arrive,
but other participants have the chance to send a message. These messages by
different participants “race” with each other. Only the first message arriving
will be processed.

The type of the message sent or the category the sending participant be-
longs to can be used to determine how the receiver processes the message.
The remaining messages may be discarded or kept for later consumption.
This aspect is not covered by the racing incoming messages pattern.

Figure 5.25 shows a scenario where a travel agent has reserved a flight for
a customer, and now waits for a confirmation or a notification that the flight
details are not acceptable. In the case of confirmation the payment is initiated,
and in the case of rejection a new flight reservation might be needed.

One-To-Many Send

A participant sends out several messages to other participants in parallel. It
might be the case that the list of recipients is already known at design-time of
the choreography or, alternatively, the selection of the recipients takes place
in the course of the conversation.

An example for this pattern is shown in Figure 5.26: four weeks before
the start of a general election of a new a government, all registration offices

5.5 Service Interaction Patterns 271

Fig. 5.25. Racing incoming messages pattern

Fig. 5.26. One-to-many send pattern

send out election notices to the registered citizens in their respective area of
responsibility.

In the BPMN, this pattern is represented by a multiple instances task
that sends election notices to all voting citizens. Citizens are represented by
a multiple participant pool, indicated by the marker at the bottom of the
citizen pool.

One-From-Many Receive

In the one-from-many receive pattern, messages can be received from many
participants. In particular, one participant waits for messages to arrive from
other participants, and each of these participants can send exactly one mes-
sage.

272 5 Process Choreographies

Typically, the receiver does not know the number of messages that will
arrive, and stops waiting as soon as a certain number of messages have arrived
or a time-out occurs.

Fig. 5.27. One-from-many receive pattern

Imagine an auctioning scenario in which the bidders bid by sending a
message directly to the seller. Each bidder can send exactly one message. The
seller accepts these messages until the auction is over, and then decides on
the highest bid. This scenario is depicted in Figure 5.27.

One-To-Many Send/Receive

In the one-to-many send/receive pattern, a participant sends out several re-
quests to different other participants and waits for responses. Typically, not
all responses need to be waited for. The requester rather waits for a certain
amount of time or stops waiting as soon as enough responses have arrived.

A travel agency looks for the best offer for a flight on a certain route. The
agent therefore initiates requests and the airlines give their prices and current
availability, as illustrated in Figure 5.28.

Multi-Responses

In the multiple responses pattern, a participant sends a request to another
participant who sends back multiple messages. An important question in this

5.5 Service Interaction Patterns 273

Fig. 5.28. One-to-many send/receive pattern

scenario is how the requester knows that there are no more messages to be
expected.

One option would be that the messages contain information about whether
there will be more messages or not. Another option could be that the last
message is of a special type. Finally, also a time-out could be used to stop
waiting for further messages.

Contingent Requests

In the contingent requests pattern, a participant sends a request to another
participant. If this participant does not answer within a given time, the request
is sent to a second participant. Again, if no response comes back, a third par-
ticipant is contacted, and so on. Delayed responses, that is, responses arriving
after the time-out has already occurred, might or might not be discarded.

Figure 5.29 shows an example where a manager delegates a task to one of
his employees. If this employee does not accept the task on time, it is delegated
to another employee, and so on.

Atomic Multicast Notification

The atomic multicast notification pattern is explained as follows. A participant
sends out notifications to several other participants who have to accept the
notification. In specific cases, only one participant is required to accept it;
in other cases, a subset of the participants or all participants are required to
accept it.

Request With Referral

The request with referral pattern is especially important in service-oriented
environments where a registry is in place that allows binding to services at run

274 5 Process Choreographies

Fig. 5.29. Contingent requests pattern

time. But also simple types of dynamic behaviour can be represented by this
pattern, for instance, the transmission of a new collaboration partner during
an interaction.

In particular, the request with referral pattern can be used if a participant
A sends a message to another participant B containing a reference to partici-
pant C. Although B does not need to know C in advance, B can now interact
with C. This pattern describes the concept of link passing mobility.

Fig. 5.30. Example involving request with referral pattern

5.6 Let’s Dance 275

As an example of this pattern, consider a customer who buys a set of books
online. The bookstore redirects the customer’s Web browser to the Web page
of an external payment service. Conceptually, this means that the bookstore
refers the payment service to the customer, who can then use the service,
although the customer was not aware about this service beforehand. This
sample scenario is modelled in Figure 5.30.

Relayed Request

The relayed request pattern is common in emailing collaboration scenarios.
A participant A sends a request to another participant B who forwards it to
a third participant C who will actually interact with A. However, B always
gets copies of the messages exchanged in order to be able to observe the
conversation.

5.6 Let’s Dance

In the Section 5.4, Petri nets were used to express process choreographies.
The main idea was to show the behavioural interfaces for the participants
of a process choreography and their interconnection using message flow. As
an alternative to modelling behavioural interfaces, languages for expressing
interaction models directly have been designed. The main difference to mod-
elling connected behavioural interfaces is that interactions are used as basic
building blocks for choreographies, and behavioural dependencies are defined
between these interactions.

Let’s Dance is a choreography language following this interaction-centric
approach. It is based on control flow patterns and service interaction pat-
terns. Control flow specification is the main focus, so the language abstracts
from concrete message formats. This section concentrates on the interaction
modelling capabilities of Let’s Dance rather than on organizational aspects or
milestones.

The main focus of Let’s Dance is to capture interactions and their be-
havioural dependencies. Elementary interactions are the building blocks by
which complex interaction rules can be defined.

An elementary interaction is a combination of a send activity model and
a receive activity model. An actor reference belonging to a role is given for
every activity model. This reference indicates which activity instances must
be performed by the same participant. Typically, there is only one participant
per role involved in a conversation. In these cases, the actor reference can be
omitted in the diagrams.

Elementary interactions are shown in Figure 5.31. At the left-hand side in
that figure, an interaction between a participant of role Seller and a partic-
ipant of role Auctioning Service is defined. It also states that a message of
type Auction creation request is sent during the interaction.

276 5 Process Choreographies

Fig. 5.31. Elementary interaction and conditional elementary interaction

At the right-hand side, a conditional elementary interaction is shown. Con-
ditional elementary interactions are valid only if the condition is met. In the
example shown, the Auctioning Service sends an Account creation request
message to the seller only if the seller is not registered.

In this section, the basic execution constraints between elementary inter-
actions are discussed. The graphical representations of these execution con-
straints are depicted in Figure 5.32.

Fig. 5.32. Basic control flow structures relating interactions

5.6 Let’s Dance 277

As seen in the milestone example, a precedes relationship between two
interactions means that an instance of the target interaction can occur only
if the instance of the source interaction has already occurred. If in a logistics
environment a delivery acknowledgment message should be sent only after a
delivery notification has been received, a precedes relationship between the
respective elementary interactions can be used to represent this business rule.

An inhibits relationship indicates that an instance of the target interaction
can occur only if no instance of the source interaction has occurred yet. In
an example involving an order process, an invoice should not be sent after an
order cancellation by the buyer has been received.

Also, scenarios where two interactions inhibit each other, that is, an in-
stance where either one or the other interaction can complete, are very com-
mon. Consider, for instance, a travel agency that either receives a confirma-
tion message from the customer or a cancellation message from the airline. To
cater to these situations, a specific notational element for vice-versa-inhibits
is introduced.

A weak precedes relationship means that an instance of the target inter-
action can occur only after the instance of the source interaction has already
completed or was skipped. Imagine a project management scenario where the
project leader expects status updates from a subcontractor that are merged
into a status report for the employer. However, in special cases the project
leader and the subcontractors can agree that no status update is needed.

Fig. 5.33. Interaction instance lifecycle

The lifecycle of interaction instances is shown in Figure 5.33. Interaction
instances can be in the states initialized, enabled, completed, and skipped. An
interaction instance becomes skipped if any of the inhibiting instances has
completed.

An interaction instance becomes enabled if there are no precedes or weak
precedes relationships targeting the corresponding interaction or all preced-
ing instances are completed and all weakly preceding instances have been
completed or were skipped.

An instance must execute, that is, the actual message exchange occurs,
only if it is enabled. After the message exchange, the instance is in the com-
pleted state. In the case of skipping, dead path elimination execution seman-
tics is applied, as was discussed in Section 4.6.

278 5 Process Choreographies

Fig. 5.34. Interaction modelling

Figure 5.34 shows a set or related interactions in the auctioning scenario,
from its start until the first milestone, that is, until the auction is set up. The
semantics of the modelled interaction is as follows.

The conversation starts with the Seller sending an Auction creation request
message to the Auctioning service. The precedes relationship defines that, if
this message arrived, an Account creation request message can be sent to the
Seller. Then, the Seller sends a Registration info message to the Auctioning
service, which responds with an Registration confirmation message.

The weak precedes relationship connecting the last elementary interactions
defines that the Auctioning service can send an Auction creation confirmation
to the Seller if it has either sent a Registration confirmation message before
or if the sending of that message was skipped. The latter is used to cater to
situations in which a Seller is already registered at the Auctioning service.

In addition to the basic control flow constructs, there are advanced control
flow constructs in Let’s Dance. Several interactions can belong to a composite
interaction. None of the contained interaction instances can become enabled
before the enclosing composite interaction instance has become enabled, and
the composite interaction instance can only complete after all contained in-
teraction instances have completed or been skipped.

Interactions can also be guarded, meaning that at the moment an interac-
tion instance could become enabled, a guard condition must be fulfilled. If this
condition is not fulfilled, the instance is skipped. Finally, repetitions and par-
allel branching with an unbounded number of branches are modelled through
repeated interactions. There are four types of repeated interactions, similar
to those in programming languages: while, repeat, for each (sequential), and
for each (concurrent).

“For each” repetitions have an expression attached that determines a col-
lection over which the repetition is performed. The knowledge about how
many instances are to be created for this interaction might be available at
design time or might be known only at run time.

5.7 Choreography Modelling in BPMN 279

Fig. 5.35. Advanced control flow constructs

Repetitions can have stop conditions attached to them. For instance, a
repeated receive interaction should be stopped as soon as answers from ten
participants have arrived.

The expressions attached to guarded and repeated interactions can be
written in plain English, as Let’s Dance is not tied to any specific expression
language. However, it must be defined which actor is going to check whether
a condition evaluates to true or which collection results from a repetition
expression.

Let’s Dance and also interaction BPMN (as mentioned in the bibliograph-
ical notes of this chapter) have been instrumental in the development of the
choreography modelling capabilities of BPMN, since they put interaction mod-
elling in the centre of attention.

5.7 Choreography Modelling in BPMN

The BPMN provides a rich set of language constructs to express process chore-
ographies at different levels of abstraction. This section introduces these lan-
guage constructs, starting from high level modelling of choreographies using
conversation diagrams to detailed modelling of choreographies. The concepts
are illustrated by an auctioning scenario, similar to the one discussed earlier
in this chapter.

280 5 Process Choreographies

5.7.1 Conversation Diagrams

Conversation diagrams provide a high level view of a collaboration. Rather
than looking at message exchanges and their ordering, conversation diagrams
represent the participants that are involved in a choreography and their com-
munication channels, that is, “who talks to whom”.

While conversation is a rather generic term, BPMN reserves a concrete
meaning for it. A conversation groups a set of logically related message ex-
changes between sets of participants.

The BPMN states that whenever the processes of two or more participants
exchange message, a collaboration takes place. The details of a collaboration
are provided by choreography models, which specify the message exchanges
and their logical ordering. Conversation diagrams are an informal representa-
tion of collaborations, that is, an aggregation of individual message exchanges
between partners.

Fig. 5.36. Elements used in BPMN conversation diagrams

Conversation diagrams are composed of a limited set of notational sym-
bols, shown in Figure 5.36. Conversations are the basic element; conversations
can be nested; the resulting sub-conversations contain sets of conversations
between participants. Conversations can also be used to call other conversa-
tions, similar to call subprocesses in BPMN process diagrams. Conversation
elements can be linked to role elements, using conversation links.

We illustrate conversation diagrams by returning to the auctioning ex-
ample. Figure 5.10 on page 254 shows the message exchanges between the
participants of an auctioning scenario. We assume that there are multiple
bidders involved.

The corresponding conversation diagram is shown in Figure 5.37. That
figure shows that bidders communicate only with an auctioning service, which
in turn communicates only with the seller. To indicate that there are multiple
bidders in that collaboration, the bidder pool is marked with the multiple
instances marker.

5.7 Choreography Modelling in BPMN 281

Fig. 5.37. Conversation diagram involving multiple bidders, an auctioning service,
and a seller

5.7.2 Choreography Diagrams

While conversation diagrams provide a concise, but rather informal repre-
sentation of collaborations, choreography diagrams define the concrete be-
havioural dependencies between the messages exchanged during a collabora-
tion, that is, they define a choreography.

In Section 5.3, we have investigated interactions between participants in
the context of milestones that are reached during a conversation. We return
to that example to introduce choreography modelling in BPMN after the
building blocks of BPMN choreographies are introduced in Figure 5.38.

Fig. 5.38. Notational elements used in BPMN Choreography diagrams

The main building blocks of choreography diagrams are choreography
tasks. Each choreography task represents one message or several related mes-
sages exchanged between participants. It consists of three parts, one partici-
pant that initiates the message exchange, one or more participants that are
involved in the message exchanges, and the choreography task name.

Each set of message exchanges represented by a choreography task is ini-
tiated by exactly one participant, called the initiator. The initiator is high-
lighted white, while the participant or the participants that are receivers are
shown in grey.

282 5 Process Choreographies

In the choreography tasks shown in Figure 5.38, Participant A is the initia-
tor. Notice that the role (initiator, receiver) of a participant is not represented
by its position in the choreography task, but by the coloring of respective field
of the task.

A choreography task with two participants represents a set of message ex-
changes between them. Request-reply is a typical message exchange pattern
represented by a choreography task. Sending a request-for-quote message from
a buyer to a supplier and the quote return message can be collectively repre-
sented by one choreography task, with the buyer being the initiator.

Choreography tasks can also represent more complex message exchanges,
for instance, message exchanges involving three participants. Consider a sce-
nario where a buyer sends request for quote messages to two suppliers. After
receiving the quotes from the suppliers, it chooses one of them and sends an
order. While this scenario can be represented by a choreography task with one
buyer and two suppliers, it could also be represented by a sub-choreography.

Sub-choreographies are similar to subprocesses, since they represent a nest-
ing structure. The scenario discussed before can be represented by a sub-
choreography that contains choreography tasks, relating to the sending of the
request, the sending of the quotes, and the sending of the order.

Fig. 5.39. Choreography task and corresponding process diagram

Figure 5.39 shows a choreography task involving two participants and two
message interactions. Participant A initiates the communication by sending
an initiating message to B, who sends a response message.

In the right-hand side of that figure, a sample process diagram is shown
that realizes that choreography. This example illustrates that within one
choreography task, several related messages can be sent and received.

Figure 5.40 shows a simplified version of the choreography discussed earlier
in Figure 5.8. This version assumes that each seller needs to be registered
before the auction can be confirmed. Thereby, the choreography does not

5.7 Choreography Modelling in BPMN 283

Fig. 5.40. Collaboration scenario, described by BPMN Choreography Diagrams

need to take a decision. Decisions in choreographies will be discussed later in
this section.

Notice that the seller starts the choreography by initiating a message ex-
change with the auctioning service. Once this message exchange completes,
an account needs to be created, and, once the registration information is sent,
the auctioning service confirms the auction creation.

Fig. 5.41. Choreography diagram with pools

Choreography diagrams can also use pools and message flow. Since in this
case the participants can be derived from the labelling of the pools, participant
labels can be omitted from choreography tasks, shown in Figure 5.41.

In this example, each choreography task represents a simple message
exchange between two participants. As discussed before, more complex be-
haviour can be represented by choreographies, for example, if multiple par-
ticipants are involved. In these settings, a graphical representation of the
choreography using pools can become quite complex. As a result, enriching
choreography diagrams with pools should only be done when few participants
are involved in a choreography.

While choreography diagrams look quite similar to process diagrams—
both have task nodes, control flow edges, and gateways—there are impor-

284 5 Process Choreographies

tant conceptual differences. Consider the choreography diagram shown in
Figure 5.42. There is a sequence of choreography tasks shown, involving a
customer, a reseller, and a payment organization. To explicitly state the start
and the end of a choreography, BPMN choreography diagrams provide a lim-
ited set of start events and end events.

First, the customer orders products by sending an order message to the
reseller. The reseller confirms the order by sending a confirmation message.
In the next step, the customer sends the funds to the payment organization,
which confirms the payment.

Fig. 5.42. Choreography diagram that is not enforceable, since the reseller cannot
know if the customer has already sent the funds

The problems start with the third choreography task, that is, when the
reseller should send the products to the customer. The reseller cannot know
that the message exchange between the customer and the payment organiza-
tion has actually materialized. Choreographies with this property are called
non-enforceable, since it is not possible to enforce the communication be-
haviour that is specified in the choreography diagram by the local process
orchestrations.

Fig. 5.43. Choreography diagram that is enforceable

5.7 Choreography Modelling in BPMN 285

The problem is due to the fact that the initiator of one message exchange,
the reseller, was not involved in the previous message exchange. BPMN deals
with this problem by allowing only choreography diagrams, in which the ini-
tiator of a message exchange is involved in the choreography task immediately
preceding it, if there is any. Then the participant knows, either as initiator or
receiver, that the message exchange is completed. Consequently, the choreog-
raphy is enforceable.

The problem in the example can be fixed, if the payment organization
sends a message to the reseller, informing it about the payment, as shown
in Figure 5.43. Then, formally, the initiator of the last task is also involved
in the previous task, so that the order of message exchanges defined in the
choreography diagram can be enforced by the local process orchestrations.

5.7.3 Gateways in Choreographies

Control flow using gateways has been discussed extensively in the orchestra-
tion chapter, where control flow patterns have been investigated. Control flow
is a cornerstone of process orchestrations, and it is also important for process
choreographies.

While the semantics of gateway nodes are virtually identical for process
orchestrations and process choreographies, their implementation is much more
complex for the latter. This is due to the lack of central control and, related
to this, the lack of global data.

Fig. 5.44. Choreography diagram with exclusive gateway

Figure 5.44 shows a choreography diagram with three tasks and an ex-
clusive gateway. The choreography defines that the company first invites and
receives offers from two suppliers. After the company has decided, in an in-
ternal process activity, which supplier to select, it either sends an order to
Supplier A or to Supplier B.

The BPMN standard mentions a set of consistency criteria for the exclusive
gateway in choreography diagrams. It states that all participants that are

286 5 Process Choreographies

Fig. 5.45. Additional choreography task Inform Suppliers makes sure that receivers
are informed about the decision taken by the exclusive gateway

affected by a decision share the data that the decision is based on. Only then
the suppliers can know whether they will receive an order.

Fig. 5.46. Collaboration diagram with process orchestrations, implementing the
choreography defined in Figure 5.45

5.7 Choreography Modelling in BPMN 287

This requirement can be fulfilled by an additional choreography task that
is performed immediately prior to the exclusive gateway. This task informs the
receivers of the choreography tasks immediately following the gateway about
the decision. The resulting process choreography is shown in Figure 5.45.

Choreography diagrams serve as blue prints to develop process orchestra-
tions for the participants involved. Figure 5.46 details parts of the process or-
chestrations of the participants that realize the choreography discussed above.
This diagram focuses on the realization of the exclusive gateway by the part-
ner’s orchestrations; process activities relating to the invitation and sending
of the offer have been discarded.

The company informs the suppliers about its decision by sending the re-
spective messages. After receiving its inform message, each supplier knows
whether or not to expect an order. As a result, the exclusive decision on the
choreography level is translated to a decision in the process orchestration of
each supplier, which realizes the choreography.

We now investigate a choreography design of this scenario using event-
based gateways. Just like in process orchestrations, event-based gateways ex-
pose the deferred choice behaviour, so that it is not required that the deciding
partner informs the other participants of its decision.

Fig. 5.47. Choreography diagram with event-based gateway

This approach is illustrated in Figure 5.47, which re-visits the example
introduced above. In this case, the suppliers may or may not receive an order.
This choreography can conveniently be implemented using an exclusive gate-
way in the process orchestration of the company and event-based gateways in
the orchestrations of the suppliers.

The choreography can be used to design process orchestrations of the part-
ners, as illustrated in Figure 5.48. The decision by the company is represented
by an exclusive gateway. The suppliers are ready to receive the order. It is
good practice to limit the time it waits for the order by a timer. When the
timer has elapsed and the event is caught, the supplier process terminates.

These examples show the alternative use of the exclusive gateway and
the event-based gateway in process choreographies. If the exclusive gateway is

288 5 Process Choreographies

Fig. 5.48. Collaboration diagram with process orchestrations, implementing the
choreography defined in Figure 5.47

used, an additional message exchange is required to inform participants about
the decision taken by one partner. In case of the event-based gateway, this
message exchange is not required. Instead partners need to deal with a period
of uncertainty, in which they do not know whether or not to expect a message.

The BPMN also supports parallel gateway and inclusive gateway. For both
gateways, the initiators of all choreography tasks directly following the gate-
way must also participate in the task that preceded the gateway. Only then
they are aware of the completion of the previous task, so that they can initiate
the message exchange following the gateway.

An example of a parallel gateway is shown in Figure 5.49. This choreogra-
phy shows a simple variant of the example discussed earlier, in which the
company sends orders concurrently to both suppliers.

A process diagram implementing the constraints imposed by the choreogra-
phy diagram is given in Figure 5.50. The parallel gateway on the choreography
level is realized by a parallel gateway on the level of process orchestrations.

To conclude this section, we return to the auctioning scenario that was used
to motivate choreography diagrams in BPMN earlier in this section. In that
scenario, the decision whether a seller needs to register was disregarded. This
example is now complemented using an event-based gateway. The resulting
choreography is shown in Figure 5.51.

5.7 Choreography Modelling in BPMN 289

Fig. 5.49. Choreography diagram using parallel gateway

Fig. 5.50. Process diagram realizing parallel gateway of process choreography

The bidder sends an auction creation request, and the auctioning service
either responds by a registration request or by confirming the creation of the
auction. Through the use of an event-based gateway, there is no need for data
exchange or for agreement on a decision, one participant decides and informs
the others, that’s it.

While choreography diagrams can capture useful information regarding
the collaboration of participants, the implementation of process orchestrations
needs to take into account business aspects, legal aspects, and technological
aspects as well and combine them with good engineering skills to come up
with viable solutions.

290 5 Process Choreographies

Fig. 5.51. Choreography diagram representing auctioning scenario

Bibliographical Notes

Business process choreographies were introduced as a mechanism to inves-
tigate business-to-business collaborations. In this context, domain standards
were established that not only specify the message communication between
the parties involved in a business-to-business interaction, but also the content
of the messages. Domain standards of this kind are RosettaNet for supply
chain management, the Society for Worldwide Interbank Financial Transfer
in the financial sector, and Health Level Seven in health care. The Organiza-
tion for the Advancement of Structured Information Standards puts forward
the ebXML standard for business collaboration in Dubray et al. (2006).

More recently, service interaction patterns have been introduced in Barros
et al. (2005), and the language Let’s Dance was introduced in Zaha et al.
(2006a). Interaction BPMN was proposed by Decker and Barros (2007). Busi-
ness process choreographies are also investigated in Decker (2009) and Decker
and Weske (2011). The execution semantics of service choreographies is re-
ported in Decker et al. (2006). A unifying framework for compatibility and
consistency in business-to-business process integration is introduced in Decker
and Weske (2007).

The relationship between a global public process choreography and the
realizations of the individual private orchestrations are investigated in van
der Aalst and Weske (2001), based on work on process inheritance as intro-
duced in Basten and van der Aalst (2001). The equivalence of process models,
using their observable behaviour, is studied in van der Aalst et al. (2006).
The relationship between compatibility notions in process choreographies and
consistency of process implementations with regard to behavioural interfaces
is studied in Decker and Weske (2007).

5.7 Choreography Modelling in BPMN 291

The operating guidelines approach is related to process choreographies;
however, rather than our checking interconnected interface processes, a be-
havioural interface can be used to generate an operating guideline, which
characterizes the valid interaction behaviours; operating guidelines are intro-
duced in Massuthe et al. (2005).

This text book can only introduce a limited set of choreography modelling
capabilities of the BPMN. For a complete presentation, there is no substitute
for the standards document Object Management Group (2011).

Part III

Architectures and Methodologies

6

Properties of Business Processes

The investigation of properties of business process models is an important
aspect of business process management. If a certain property at the busi-
ness process model level can be shown, then all process instances based on
that business process model expose this property. In this chapter, the most
important properties for process models are introduced and related to each
other.

While structural dependencies of processes are important, dependencies
related to data processed during business processes should be taken care of.
Data dependencies between activities in business process models are studied
in Section 6.1.

Structural properties of process models are at the centre of attention; these
properties are neither application specific nor domain specific. Conceptually,
the situation is similar to normalization in database theory. If all tables in
a relational database schema are, for instance, in third normal form, then
certain anomalies can no longer occur during the run time of the database
applications.

Structural properties of business processes have been investigated in the
context of Petri nets. Based on structural soundness, investigated in Sec-
tion 6.3, the original soundness criterion introduced in the context of workflow
nets is discussed in Section 6.4.

While soundness is an important criterion, it appears to be too strong for
particular settings. Consequently, relaxed soundness and weak soundness have
been introduced as less rigid properties that are still helpful in analyzing busi-
ness process models. Section 6.5 looks at relaxed soundness while Section 6.6
introduces weak soundness.

To provide properties for business processes with advanced control flow
patterns, such as the discriminator pattern, lazy soundness was developed.
Section 6.7 investigates lazy soundness.

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 6,
© Springer-Verlag Berlin Heidelberg 2012

293

http://dx.doi.org/10.1007/978-3-642-28616-2_6

294 6 Properties of Business Processes

6.1 Data Dependencies

Application data are an integral part of business processes. Data can be cre-
ated, modified, and deleted during the execution of business processes. Since
business processes consist of a set of activities that are related, these activities
operate on an integrated set of application data.

Data in business process models has two aspects, both of which need to
be covered:

• Data that activity instances manipulate by invoking applications or ser-
vices.

• Data dependencies between process activities.

The former issue is dealt with in the operations subdomain. In service-oriented
systems architectures, for instance, the parameters of service invocations are
specified, so that data can be communicated correctly with software systems
at run time.

At the process level, data dependencies between process activities is typi-
cally described by data flow. An example of data flow in a business process in
the financial sector is given. A credit approval business process contains ac-
tivities to enter a credit request, to assess the risks of granting the credit, and
to inform the customer about the decision made by the financial institution.

Fig. 6.1. Data dependencies imply activity orderings

The activities of this process model operate on case data, in particular,
the credit request. The credit request can be represented by a record data
type with fields for the name and address of the credit requester, the amount
requested, and other information, such as the risk related to granting the
credit.

There are data dependencies between the activities mentioned. The Col-
lect Credit Info activity is the first activity performed. Only when this data
is available, can the risk be assessed in the Assess Risk activity, the final de-
cision be made (Decide), and the requestor be notified (Notify). Therefore,
the ordering of the activities in the business process is strongly related to the
data dependencies of the activities.

The process model is illustrated in Figure 6.1, using a graph-based process
language that explicitly represents input and output parameters of activities

6.1 Data Dependencies 295

and data dependencies. Observe that the actual data transfer can be per-
formed by passing references to data objects or values of data objects, as
described in Section 3.7.2 in the context of workflow data patterns.

This diagram shows that data dependencies have implications on the or-
dering of activities in the process: the Assess Risk activity can be started only
when the credit information is available. Since this data object is provided as
output parameter CreditInfo of the Collect Credit Info activity, this activ-
ity needs to complete before the risk can be assessed, implying an ordering
between these activities.

This example shows that data dependencies between process activities are
reflected by data flow. A data flow edge between an output parameter of one
activity and an input parameter of another activity represents the fact that
the latter activity requires a data value that the former generates. In the
example, the Collect Credit Request activity generates an output parameter
CreditInfo that the Assess Risk activity requires for its start.

If, as assumed so far, output parameter values are only available when the
respective activity terminates, there is a direct implication of data flow on
control flow. This property is known as control flow follows data flow, and it
is explained as follows.

Control flow needs to follow data flow, since otherwise the process instance
would come to halt. This observation is illustrated in an example shown in
Figure 6.2, where a data dependency from the Assess Risk activity to the
Decide activity is shown, while the control flow constraint exists, for some
reason, in the opposite direction.

As a result, neither of these activities can be started, because control flow
defines that Assess Risk can only start after Decide has completed, and Decide
can only start after Assess Risk has generated the risk factor data value.

Because the risk factor value is only available when the activity terminates,
both activities are stuck in a permanent waiting condition, and a deadlock
situation has occurred. The process model shown in Figure 6.2 results from a
modelling mistake, and the control flow follows data flow rule can be used to
detect these kinds of modelling mistakes.

Fig. 6.2. Data flow violated by control flow, resulting in deadlock

296 6 Properties of Business Processes

These considerations hold only if it is assumed that an activity instance
requires its input parameters at the start. If this constraint is relaxed and
input parameters can be consumed after an activity instance has started,
then in a process with a data flow A → B, B can actually start before A
terminates. At some point—when the input values are required—B needs to
wait for A to deliver the required data.

This assumption can also be relaxed at the producer side of data. If we
allow activities to generate data while they are running, then the generated
data can be taken by the follow-up activity, so that activities can execute
concurrently, realizing a data value stream between them.

While most workflow management systems assume that input data is avail-
able up front and that only on completion, does an activity instance write
output data values, some approaches, for instance, the BPMN, relax this as-
sumption.

The use of data dependencies for process enactment control will be dis-
cussed in more detail in the context of case handling in Section 7.5, where
data dependencies—and not the process structures—are the driving force for
process control.

6.2 Object Lifecycle Conformance

All business processes generate or manipulate data. An ordering process in a
reseller company deals with products, customers, and orders. A claim handling
process in an insurance company requires data about the insuree and the
claim. Additional data objects might be required, for example, an assessment
of the damage or a report by an evaluator.

Object-orientation provides expressive means to organize data objects,
with respect to both structure and behaviour. Object structures can be rep-
resented by class diagrams, which consist of classes and relationships between
them. Classes are containers for objects, so that the relationships between
classes define relationships between objects. The Unified Modeling Language
is the standard for object-oriented analysis and design.

But not only the structure of objects and their relationships to other ob-
jects can be specified, also their behaviour. Behaviour of objects is represented
by states and state transitions that objects can perform. State transitions are
typically done by executing methods. State transition diagrams are used to
capture the behaviour of objects, their object lifecycle.

The object lifecycle of a quote object is shown in Figure 6.3. When a quote
object is created, it enters the initial state. Then a draft version of the quote
is created. At this point, it is ready to be confirmed by a manager.

A typical company policy determines that a quote can only be sent if it
is confirmed. The quote object can perform the state transition from draft
to confirmed by executing the confirm method, triggered by the manager.
However, there is also the possibility that the manager prepares the quote

6.2 Object Lifecycle Conformance 297

Fig. 6.3. Object lifecycle of quote object

personally, so that the quote is implicitly confirmed, represented by the state
transition from the initial state to the confirmed state. Confirmed quotes can
be sent. Then either the quote is accepted or rejected.

All these activities mentioned occur in the context of a business process.
When the manager confirms the quote, he enacts a process activity. This
activity is part of a business process, with activities preceding it and with ac-
tivities following it. This means that state transitions of objects are performed
by business process activities.

Since business processes define an order of activities and activities induce
state changes of data objects, both need to be in line with each other. As a
result, for example, the state of a quote object can be changed to accepted only
if it is in state sent, not when it is in the draft state. The business policy to
send only confirmed quotes can be realized by the process, using the lifecycle
of the quote object.

Fig. 6.4. Business process operating on a quote data object

Figure 6.4 shows a business process operating on a quote data object.
When a request for quote is received, it decides whether to prepare a quote.

298 6 Properties of Business Processes

If this is the case, a quote data object is initialized and the quote is prepared.
After it is prepared, it enters the draft state. The checking activity can trigger
either of two state transitions. If the check is successful, then the quote enters
the confirmed state. Otherwise, it remains in the draft state and is refined in
the prepare quote task.

Once the quote is confirmed, it can be sent to the customer. Then an
event-based gateway is used to react on either message that can be received.
If an order is received, the quote is accepted. Otherwise, the quote is rejected.
Notice that in BPMN, receive tasks do not change the state of data objects,
they just receive messages. Due to space limitations, we permit them to also
change the state of the quote object in this example.

This example illustrates that the behaviour of data objects used during
business processes and the process itself need to fit to each other. In the
example shown, both fit nicely. The process only uses state transitions of the
quote object that are defined in the lifecycle of that object. In this case, the
business process conforms to the lifecycle of the data object, the process is
object lifecycle conformant.

The notion of object lifecycle conformance provides a link between a busi-
ness process and the data objects it operates on. A violation of object lifecycle
conformance is a useful hint to correct the models, either the lifecycle of the
data object or the process model.

Fig. 6.5. Business process that does not conform to the quote object’s lifecycle

A business process that does not conform with the lifecycle of the quote
object is shown in Figure 6.5. While on first sight this process looks like a
correct process model, the process sends a quote in the draft state. Consulting

6.3 Structural Soundness 299

the object lifecycle of the quote object in Figure 6.3, we see that there is no
state transition from draft to sent, which shows the violation.

This example illustrates the additional means that object lifecycle confor-
mance provides to check the correctness of process models. The problem does
not need to be in the process model; the designer of an object lifecycle model
might have overlooked certain state transitions that are meaningful from a
process perspective.

6.3 Structural Soundness

In this section, the structure of business process models is investigated, and
an initial soundness criterion is introduced. While the considerations in this
section hold for process models represented in any of the process orchestra-
tion languages introduced above, this section uses Petri nets, in most cases,
workflow nets, to represent these structural errors. The reasons are not only of
historical nature—workflow nets were the first approach for which soundness
was investigated—but also practical: the formal foundation of workflow nets
allows to formally specify and reason about soundness properties.

The type of structural error discussed in this section can be characterized
by dangling transitions or places, that is, transitions without input places or
output places. Figure 6.6 shows a Petri net with dangling places and transi-
tions. Notice that this Petri net is not a workflow net, since there are multiple
places without incoming edges and not all nodes, for instance, t5, are on a
path from i to o.

When a token enters the Petri net in place i, transition t1 is enabled. Note
that there is no way that t4 can ever be enabled. When t2 fires, t5 and t3
are enabled. When t3 terminates, the output place o is reached, signalling
the completion of the case. However, at this point in time, t5 could still be
running! As a consequence, the token at the output place o does not signal the
completion of the case. These types of errors are ruled out by the definition
of workflow nets.

Fig. 6.6. Petri net with dangling places and dangling transitions

This example motivates the development of correctness criteria for process
models to prevent the modelling errors discussed. The simplest correctness

300 6 Properties of Business Processes

criterion uses the structure of business process models. It is inspired by the
definition of workflow nets and takes advantage of the definition of workflow
nets.

Definition 6.1 A process model is structurally sound if the following condi-
tions hold:

• There is exactly one initial node, which is the only node without any
incoming edges.

• There is exactly one final node, which is the only node without any out-
going edges.

• Each node in the process model is on a path from the initial node to the
final node.

�

Structural soundness also goes well with the definition of business process
models, which states that business process models consist of related activities.
Structural soundness makes this relationship concrete by defining that each
activity is embedded in the context of the process and that no activities are
independent of other activities of the same business process.

Many business process languages enforce structural soundness, for in-
stance, event-driven process chains and business process diagrams expressed
in the BPMN. However, the process designer has the freedom to use these
process languages to design process models that are structurally sound.

6.4 Soundness

The first soundness criterion for business processes was developed by Wil van
der Aalst in the context of workflow nets; but this criterion is also applicable to
other process modelling notations. For this, the execution semantics of these
languages have to be taken into account. If formal proofs are required, then
process languages with a formal execution semantics, such as workflow nets
are needed.

6.4.1 Motivation of Soundness

In order to motivate the soundness criterion, a number of workflow nets with
errors are discussed. Figure 6.7 shows a workflow net with two transitions
which exhibit an exclusive or split behaviour and an and join behaviour.

The exclusive or split transition t1 puts a token either in the upper input
place of t2 or in the lower input place of t2, but not in both places. As a
consequence, the and join transition t2 can never be enabled, because not all
input places have tokens. Therefore, cases based on the workflow net shown
will suffer from deadlock—no case will ever terminate.

6.4 Soundness 301

Fig. 6.7. Workflow net with deadlock

While in a deadlock the activities involved can never be executed, in a
livelock situation a set of activities are trapped in an infinite loop. Livelock
can be the consequence of different types of errors in process models. If a
condition to enter a loop is always evaluated to true, then the loop is never
left. This type of error cannot be detected on the basis of process models.

Not only can erroneous conditions in decision nodes lead to livelock, but
also erroneous process structures, as shown in Figure 6.8. This workflow net
suffers from the fact that the loop is entered by an and split transition and not
by an exclusive or split transition. Therefore, the loop is repeatedly iterated,
realizing a livelock situation.

In addition to the livelock, this workflow net also suffers from the fact that
each time the loop is iterated, one token is put in the output place. Therefore,
a token in the output place no longer indicates the completion of the process.

Fig. 6.8. Workflow net with livelock

A workflow net that suffers from different problems is shown in Figure 6.9.
Depending on the decision made by the exclusive or split transition t1, either
a deadlock or an improper termination occurs. If t1 puts a token on p1 and
no token on p2, then the and join transition t3 cannot be enabled, since there
will not be a token at place p3. As a consequence, a deadlock situation will
occur.

If, however, t1 puts a token in p2, then t2 can fire, putting a token in
the output condition o. At this point, there is still a token in p3, showing a
situation similar to that in the previous case: the process instance does not
terminate properly because the process runs even after a token is put in the
final place.

302 6 Properties of Business Processes

Fig. 6.9. Workflow net with deadlock/remaining tokens

6.4.2 Definition

Based on these observations, soundness in workflow nets is defined. The idea
of the soundness criterion is to make sure that all tasks can participate in
a process instance; each process instance eventually terminates, and when it
terminates there is exactly one token in the final place.

In order to formally specify sound workflow nets, the following definition
on the states of a workflow net is useful.

Definition 6.2 Let PN = (P, T, F) be a workflow net, i ∈ P be its initial
place, o ∈ P its final place, and M,M ′ markings.

• [i] is the state in which there is exactly one token in place i ∈ P and no
token in any other place of the workflow net

• [o] is the state in which there is exactly one token in place o ∈ P and no
token in any other place of the workflow net

• M ≥ M ′ if and only if M(p) ≥ M ′(p), ∀p ∈ P
• M > M ′ if and only if M ≥ M ′ ∧ ∃p ∈ P : M(p) > M ′(p)

�

Using these definitions, the soundness criterion can be specified in a formal
way.

Definition 6.3 A workflow system (PN, i) with a workflow net PN =
(P, T, F) is sound if and only if

• For every state M reachable from state [i] there exists a firing sequence
leading from M to [o], that is,

∀M([i]
∗→ M) =⇒ (M

∗→ [o])

• State [o] is the only state reachable from state [i] with at least one token
in place o, that is,

∀M([i]
∗→ M ∧M ≥ [o]) =⇒ (M = [o])

6.4 Soundness 303

• There are no dead transitions in the workflow net in state [i], that is,

(∀t ∈ T) ∃M,M ′ : [i]
∗→ M

t→ M ′

�

Reachability analysis can be used to decide whether a given workflow net
is sound. The idea of reachability analysis is that the states and the state
changes of process instances are represented explicitly. Reachability graphs
are used to represent the different states that a process instance can take.

A reachability graph consists of nodes and labelled edges, where the nodes
correspond to states of the workflow net and the edges represent state transi-
tions. State transitions occur by firing transitions. Therefore, each state tran-
sition is labelled with the transition that realized this state transition.

Fig. 6.10. Workflow net and corresponding reachability graph

Definition 6.4 A directed graph G = (V,E, l) is called a reachability graph
of a workflow net PN if V corresponds to the set of reachable states of the
workflow net and E ⊆ V × V corresponds to state transitions. The mapping
l : E �→ P(T) assigns to each edge a set of transitions, such that (M,M ′) ∈
E ⇔ M

t→ M ′ for each t ∈ l(E). �

This definition is illustrated by the example shown in Figure 6.10. In the upper
part of that figure, a simple workflow net is shown. The reachability graph in
the lower part of that figure contains all states that are reachable from the
initial state. The graph also shows that [o] can be reached from [p] by either
firing transition t2 or t3.

A workflow net with a loop is shown in Figure 6.11. The exclusive or
split transition B is used to decide whether or not to iterate the loop. Fig-
ure 6.12 shows the corresponding reachability graph. In this case, the loop in
the workflow net is reflected by a loop in the reachability graph.

The soundness criteria can be proven based on the reachability graph:

304 6 Properties of Business Processes

Fig. 6.11. Workflow net with loop

• For every state reachable from [i] there is a continuation to state [o]: this
can be shown by following the arcs from the initial state. Any path of
maximal length will terminate in state [o].

• It can be concluded from Figure 6.12 that [o] is the only state reachable
from the initial state with one token in place o.

• All transitions participate in an execution that starts in state [i] and ter-
minates in state [o]. In order to show this property, for each transition in
the workflow net there needs to be a path containing it in the reachability
graph that leads to the final state.
In the example, transitions A,B, and D participate in every sound execu-
tion, and C is involved if the loop is performed. Therefore, any transition
can participate in a process instance—although obviously not every tran-
sition participates in every process instance.

Fig. 6.12. Reachability graph of workflow net shown in Figure 6.11

In real-world settings, the decision that the exclusive or split transition B
makes might depend on process data, such as a credit amount or the status of
a customer. These types of application-specific information are not considered
in soundness analysis; they are abstracted from by a simple assumption: in
every workflow net, each decision alternative is eventually taken.

As a result of this assumption, the loop is iterated only a limited number
of times. Eventually, the exclusive or split will decide to leave the loop and to
put a token on place p3 so that the process instance can terminate.

This assumption in workflow net analysis does not need to be valid in each
process model. There is nothing that prevents the modeller of a workflow net
for defining erroneous conditions for the exclusive or split, for instance, the

6.4 Soundness 305

Boolean constants true and false to decide about whether to take the loop or
to leave it.

If true is used for entering the loop and false for iterating it, then the
loop will never be left. As a result, the workflow net never reaches the output
condition o, although—formally—it is a sound workflow net! These aspects
are not covered in workflow net analysis.

The analysis of workflow nets is based on a fairness assumption, which
states that whenever there are several options to choose from, eventually any
of these options will be chosen. Obviously, this fairness assumption is violated
when choices are labelled with the constants true and false, respectively.

To illustrate the fairness assumption, consider a process to prepare a quote.
A clerk prepares a draft quote document, which is then either agreed by
a supervisor, or the supervisor asks the clerk for certain changes. In this
setting, the fairness assumption states that—possibly after many iterations—
eventually the supervisor agrees to the quote. As a result, each possible choice
is taken eventually.

6.4.3 Soundness Theorem

Reachability analysis based on reachability graphs is a simple method to char-
acterize the cases that comply with a given workflow net. However, reacha-
bility analysis only works well for small examples. The reachability graphs of
real world business processes involving dozens of activities suffer from state
explosion, which renders reachability graph analysis inappropriate in these
settings.

Besides manually creating a reachability graph and checking for the
three properties of workflow nets that collectively define soundness, there
are computer-supported ways to determine soundness. The first class of ap-
proaches creates the reachability graph automatically and checks the sound-
ness property. Due to the state explosion problem, this approach suffers from
exponential run time behaviour. As a result, the creation of the reachability
graph might not be feasible for real-world applications.

But there are other options that take advantage of the rich set of tools
that have been developed by the Petri net community. In the remainder of
this section, one of these approaches is discussed. It is based on a theorem
that states a formal relationship between sound workflow nets and liveness
and boundedness.

The general idea is deriving a Petri net from the workflow net to be checked
for soundness, as sketched in Figure 6.13: By adding a transition t∗ to a
workflow net PN , and linking the final place o to t∗ and t∗ to the initial place
i, a Petri net PN ′ is created.

We can show that PN ′ is live and bounded if and only if PN is sound. As
a consequence, existing techniques to analyze liveness and boundedness for
Petri nets can be used to check a workflow net for the soundness property.

306 6 Properties of Business Processes

For an important subclass of Petri nets, there are efficient analysis tech-
niques for liveness and boundedness. This renders the check for soundness of
workflow nets an efficient task, even for large workflow nets, which can be
found in real-world scenarios.

Theorem 6.1 Let PN = (P, T, F) be a workflow net and t∗ /∈ T . PN is
sound if and only if (PN ′, i), such that PN ′ = (P ′, T ′, F ′), P ′ = P , T ′ =
T ∪ {t∗}, and F ′ = F ∪ {(o, t∗), (t∗, i)}, is live and bounded. �

To prove this theorem, we first show that if PN ′ is live and bounded, then PN
is a sound workflow net. Then, it is shown that from the soundness property
of the workflow net, liveness and boundedness properties of the Petri net PN ′

follow. The proof is illustrated in Figure 6.13.
Since PN ′ is live, for each transition there is a firing sequence starting

in the initial state [i] that activates it. This is especially true for the added
transition t∗. Since o is the only input place of t∗, we can conclude that there
is a state M reachable from [i] with at least one token in o, that is, M ≥ [o].

When t∗ fires, a token is put on the initial place i. Again, there is a firing
sequence that leads to a state in which there is a token in o. Since PN ′ is
bounded, M = [o], because otherwise tokens would aggregate in a place of the
Petri net.

Fig. 6.13. Workflow net PN and Petri net PN ′, illustrating soundness theorem

Now we show that if PN is sound, PN ′ is bounded. This is shown by
contradiction. Assume that PN is sound, but that PN ′ is unbounded. Since
PN is sound and (by assumption) PN ′ is unbounded, there exist statesM,M ′

such that i
∗→ M

∗→ M ′ and M ′ > M , allowing the aggregation of tokens in
a place of PN ′.

Since PN is a sound workflow net, there exists a firing sequence σ such
that [i]

∗→ M
σ→ [o]. Applying the same firing sequence σ to state M ′ leads to

6.4 Soundness 307

a state M ′′ > [o]. This means that in M ′′ there is a token in o; but there is
at least one additional token in the net! This is a violation of the soundness
property of PN and shows the contradiction.

Finally, we have to show that if PN is sound then PN ′ is live. Soundness
implies that each transition can participate in a firing sequence leading from
the initial state [i] to the final state [o]. By firing t∗, the initial state [i] can
be reached, so that liveness of PN ′ follows. �

For arbitrary Petri nets, liveness and boundedness are still complex to
compute, so that exponential run time behaviour can be expected. However,
for an important subclass of Petri nets, liveness and boundedness can be
computed in polynomial time. This subclass is free choice nets. Free choice
nets have the property that the sets of input places of two transitions are
either disjoint or identical.

Definition 6.5 A Petri net (P, T, F) is a free choice net if and only if for
t1, t2 ∈ T either •t1 = •t2 or •t1 ∩ •t2 = ∅. �

Fig. 6.14. Non-free-choice workflow net

Figure 6.14 shows a non-free-choice workflow net, because •t4 = {p3, p4}
and •t5 = {p1, p4}, resulting in •t4 ∩ •t5 �= ∅, and •t4 �= •t5.

Non-free-choice nets are not very desirable in business process modelling,
because the behaviour of the system depends on the ordering in which con-
current transitions fire.

In the example, if t2 fires before t3, then t5 cannot fire, since the token in
p1 is no longer available. In this case, t4 can fire, terminating the workflow
net. If, on the other hand, t3 fires before t2, then there is the possibility that t5
fires. In this case, t2 cannot fire, since the firing of t5 withdrew the token from
p1. This means that there is no free choice in firing transitions t4 and t5, but
the choice is predetermined by the firing behaviour of nonlocal transitions, in
our case t2 and t3.

Note that the free choice property is orthogonal to the soundness property.
There are non-free-choice workflow nets that are sound and those that are not
sound. The workflow net shown in Figure 6.14 is non free choice. Looking at
its reachability graph in Figure 6.15, we can show that this is in fact a sound
workflow net.

308 6 Properties of Business Processes

Fig. 6.15. Reachability graph of non-free-choice workflow net in Figure 6.14, show-
ing its soundness

6.5 Relaxed Soundness

For a specific class of business processes that are often the outcome of real-
world business process modelling using semiformal modelling techniques, the
soundness property appears to be too restrictive. In these settings, the con-
venient representation of process models is in the centre, rather than formal
aspects. Relaxed soundness aims at providing a correctness criterion that ac-
cept these aspects and nevertheless provides a formal property that business
processes can be analyzed against.

To illustrate the concepts behind relaxed soundness, a sample event-driven
process chain is shown in Figure 6.16. The process represented deals with the
handling of incoming goods. The goods are checked, and if they are not okay,
a complaint is filed. In any case, the receipt of the goods is documented. If
the goods are not okay, this information needs to be recorded in the goods
receipt.

The problem with this example is that the exclusive or split connector in
the upper right part of the event-driven process chain needs to wait until the
decision on whether the goods are okay is made. If the goods are not okay,
the exclusive or split needs to select the left branch, triggering an and join
connector. The and join connector waits for the second incoming edge before
the process can continue.

While this event-driven process chain captures the semantics of the busi-
ness process quite well, it also permits a set of undesired executions:

• If the exclusive or split selects the and join branch but the goods are okay,
the and join waits permanently for the filed complaint, which will never
appear. As a result, the process is stuck in a deadlock situation.

• If the exclusive or split does not select the and join branch, but the goods
are not okay, the and split cannot fire, because just one incoming edge—
the filed complaint—is signalled. In this case, the receipt of the goods is
registered, but the complaint on the quality of the goods is lost.

The underlying idea of relaxed soundness is that process models are accept-
able if they allow desired process instances with certain additional properties,
discussed below. However, undesired process instances are not generally dis-
allowed, as in the original soundness property.

To investigate relaxed soundness in more detail and to reason about the
formal properties of event-driven process chains, an algorithm to translate an

6.5 Relaxed Soundness 309

Fig. 6.16. Typical example of an event-driven process chain

event-driven process chain in a workflow net is introduced. This translation is
done in three steps. In Steps 1 and 2, a translation of the event-driven process
chain to Petri nets is achieved, while Step 3 translates the resulting Petri net
into a workflow net.

310 6 Properties of Business Processes

Fig. 6.17. Translation of event-driven process chain into a Petri net

Step 1, Generation of Petri Net Modules: Step 1 maps the functions of the
event-driven process chain to transitions in the workflow net. Events of the
event-driven process chain are mapped to places in the workflow net. Finally,
the connectors are mapped to Petri net modules that realize the semantics of
the connectors. These translation rules are shown in Figure 6.17.

The mapping of the exclusive or connector of an event-driven process chain
to a Petri net module is straightforward. Two transitions share an input place,
and as soon as one fires, the token is consumed, so that the other transition
cannot fire, realizing an exclusive or split semantics.

Analogous considerations hold for the and connector in an event-driven
process chain: an and connector is mapped to one transition with two output
places, so that firing the transition results in a token in each of these output
places, realizing and split semantics.

An exclusive or join and an and join are realized in Petri nets as shown in
Figure 6.17. Observe that the number of outgoing edges of a split connector
and the number of incoming edges of a join node is not restricted to two;
the extensions to arbitrary numbers is obvious for exclusive or split and and
join/split connectors.

Event-driven process chains allow the specification of (inclusive) or split
and or join connectors. For these connectors, the mapping to Petri nets is
not trivial, because the translation depends on the number of outgoing edges
of the or split—or the number of incoming edges of the or join, respectively.
The mapping for the case n = 2 is shown in Figure 6.18.

In this case, there are three possible behaviours of the or split : Either
event E1 occurs or event E2 occurs or both events occur. These alternatives
are represented in the Petri net by three transitions t1, t2, and t3. The case
where only E1 occurs is represented by the firing of t1; the case where only

6.5 Relaxed Soundness 311

E2 occurs is represented by the firing of t3; and the case where E1 and E2
occur is represented by the firing of t2.

To generalize these considerations, for an or split with n outgoing arcs,
2n − 1 cases have to be considered, that is, the number of nonempty subsets
of a set with n elements. Therefore, a translation of an or split to a Petri net
is feasible only if the or split has few outgoing edges.

A similar observation can be made for the or join: all behavioural alter-
natives of the or join need to be represented by transitions. An example for
n = 2 with three alternative cases is shown in the lower part of Figure 6.18.

Fig. 6.18. Mapping of event-driven process chain or connector to workflow net

Step 2, Module Combination: In Step 2, the Petri net modules are com-
bined. If the input and output elements of the modules are of the same kind
(for example, both are places) then the elements are merged. If on the other
hand the input and output elements are different (places and transitions) then
the attached arcs are merged.

Step 3a, Add Source Place: In case the Petri net features multiple places
without incoming edges—that is, in case the original event-driven process
chain had multiple start events, a new initial place i is added. This step is
required to transform a Petri net into a workflow net.

For each place p reflecting a start event in the event-driven process chain,
a transition t and arcs i → t and t → p are added. It is assumed that the

312 6 Properties of Business Processes

start events are alternative and that the occurrence of one start event suffices
to start the process.

Step 3b, Add Sink Place: If the original event-driven process chain had
multiple end events, a new final place o, a new transition t, and an arc t → o
are added to the Petri net. For each place p representing an end event in the
event-driven process chain, an arc p → t is added. It is an assumption that
all end events need to occur for the process to complete.

To illustrate this algorithm, it is applied to the event-driven process chain
shown in Figure 6.16. In Step 1, the elements in the event-driven process chain
are translated to workflow net modules. In Step 2, the workflow modules are
combined. Step 3a is not required, since there is one dedicated start event in
the event-driven process chain, which can be immediately translated to the
initial place of the workflow net.

Step 3b is required, because there are two end events, namely Goods dis-
tributed and Receipt recorded. By adding a new final place o and a transition
t10 to synchronize these end events, the workflow net shown in Figure 6.19 is
achieved.

Fig. 6.19. Relaxed sound workflow net

The workflow net shown in Figure 6.19 requires some discussion. First
of all, the resulting workflow net is a non-free choice net, because there are
transitions (t5 and t6) that share input places, but the sets of input places of
these transitions are different. This property of the workflow net can lead to
an improper behaviour that was not desired by the process modeller.

Assume a process instance in which the goods have arrived, have been
checked, and are not okay. In this case, a complaint is filed. But since there

6.6 Weak Soundness 313

is already a token in p3, there is nothing that prevents t5 from firing. If later
t4 sends the filed complaint to p4, this token will remain in p4!

The process continues, and finally t10 fires and a token is put in the final
place. Since there still is a token at p4, the workflow net suffers from the
improper termination problem, since from the initial state, a state M > [o]
can be reached. This condition violates the soundness property of workflow
nets. Hence, the workflow net is not sound.

At the same time, there are process instances that expose a desired be-
haviour and that comply with this workflow net: if the goods are not okay, the
complaint is filed and t6 fires, the workflow terminates properly. If the goods
are okay and t5 fires, the workflow will also terminate properly. This means
that there are several process instances that result in proper executions.

To capture the fact that there are desired and undesired process instances
that comply with a given workflow net, a new correctness criterion is in-
troduced: relaxed soundness. The idea of relaxed soundness is that for each
transition there is a firing sequence that contains it and finally leads to a
desired process instance.

Relaxed soundness includes firing sequences that do not lead to proper
termination, for example, that result in a deadlock situation or in improper
termination. In order to define relaxed soundness, the notion of a sound firing
sequence is introduced.

Definition 6.6 Let S = (PN, i) be a workflow system. Let σ, σ′ be firing
sequences and let M,M ′ be states. σ is a sound firing sequence if it leads to a
state from which a continuation to the final state [o] is possible: [i]

σ→ M and

∃σ′ such that M
σ′
→ [o]. �

Based on the definition of sound firing sequences, relaxed soundness can be
defined as follows.

Definition 6.7 A workflow system S = (PN, i) is relaxed sound if and only
if each transition of PN is an element of some sound firing sequence:

∀t ∈ T ∃M,M ′ : ([i]
∗→ M

t→ M ′ ∗→ [o])

�

The intuitive meaning of relaxed soundness is as follows: for each transition
t representing an activity in a relaxed sound process model, there is at least
one process instance that starts in the initial state [i], contains activity t, and
completes in the final state [o].

6.6 Weak Soundness

The weak soundness property for business processes was developed in the
context of process choreographies. A process choreography is realized by mul-
tiple local process orchestrations, as discussed in Chapter 5. To investigate

314 6 Properties of Business Processes

weak soundness, we assume that each process orchestration is represented by
a Web service. Each Web service exhibits conversational behaviour, and by
composing these Web services, distributed business processes are developed.

Since distributed business processes are composed of existing Web services,
the stipulation that every functionality provided by the process orchestrations
involved is actually used is too restrictive. In contrast, we can allow process
choreographies that exhibit proper behaviour, but do not use all parts of
the Web services involved. This property is called weak soundness, and it is
formalized as follows.

Definition 6.8 A workflow system (PN, i) is weak sound if and only if the
following holds:

• For every state M reachable from state [i] there exists a firing sequence
leading from M to [o], that is,

∀M([i]
∗→ M) =⇒ (M

∗→ [o])

• State [o] is the only state reachable from state [i] with at least one token
in place o, that is,

∀M([i]
∗→ M ∧M ≥ [o]) =⇒ M = [o]

�

These concepts are illustrated by example originally introduced in Martens
(2003a). A workflow module of a travel agency is shown on the right hand side
in Figure 6.20. The process starts by getting an itinerary, providing means of
travel and collecting available travel options. Concurrently rough planning
and detailed planning is conducted, and the possibility to change plans is
provided.

Finally, the schedule is sent. In this example, there are incoming places
Itinerary and Selection, and outgoing places Means of Travel and Route Plan-
ning. Abstracting from these places and the associated arcs creates a workflow
net that describes the internal process of the travel agency.

The workflow module shown can be composed with other modules. Fig-
ure 6.20 shows a default module that has one incoming place and one outgoing
place; these places are in fact common with the respective places in the route
planning workflow module, characterized by the identifiers of the places.

This property of workflow modules is called syntactic compatibility: work-
flow modules are syntactically compatible if their transitions and internal
places are disjoint and each common place is an incoming place of one mod-
ule and an outgoing place of the other. As a result, the default module selects
an appropriate itinerary, so that the customer states the itinerary and gets
the final travel plan.

The composition of these workflow modules is done by merging communi-
cation places, adding a new initial place to the composition as well as a tran-
sition that puts a token in each of the input places of the original workflow

6.6 Weak Soundness 315

Fig. 6.20. Workflow module with syntactically compatible default module

modules, similarly to the procedure for translating an event-driven process
chain to a workflow net.

Analogously, a new final place and a transition are created and linked to
the workflow modules accordingly. The transition is enabled when all output
places of the original workflow modules have a token.

As a result of this composition, common places of the combined workflow
modules are merged and become internal places. The incoming and outgoing
places that are not common will form the new interface to the composed
workflow module. The resulting composition of the route planning module
and the default module is shown on the right hand side in Figure 6.21.

If workflow modules can be composed so that no interface places remain,
then a distributed business process can be established. In the example, the cur-
rent workflow module Default Planning, developed by composing two workflow
modules, requires another workflow module to attach to the interface places.
Figure 6.21 shows an additional workflow module called Customer Module
and its association with the Default Planning workflow module.

316 6 Properties of Business Processes

Fig. 6.21. Workflow module default planning and customer workflow module

The customer module and the default planning module fit perfectly with
each other: the incoming place i of the default planning module is matched by
the outgoing place of the customer module, and the outgoing place p of the
customer module matches the incoming place of the default planning module.

Workflow modules with this property are called environments of each
other. The sample distributed business process consisting of three workflow
modules—representing three Web services—is shown in Figure 6.22.

After discussing the composition of Web services, whose behaviour is rep-
resented by workflow modules, the correctness criterion weak soundness is
investigated in more detail.

Figure 6.23 shows workflow modules A and B, each of which corresponds
to a sound workflow net if the communication places and the associated arcs
are abstracted from. A and B are syntactically compatible, since their respec-
tive incoming and outgoing places match. The composition of these workflow
modules is represented in Figure 6.24, where the resulting workflow net is
shown. The overall workflow net is weak sound, because the final state [o] can

6.6 Weak Soundness 317

Fig. 6.22. Distributed business process composed of three workflow modules

be reached from each state reachable from the initial state [i], and when [o] is
reached, no other token is in the net.

While this workflow net is weak sound, it is not sound, because some
transitions can never fire. In Figure 6.24, these transitions are marked by
dotted rectangles. Although the original workflow modules representing the
process orchestrations realized by the Web services are sound, due to the
composition and the additional interface places and their attachment to the
workflow modules, the resulting workflow net is not sound.

This abstract example also shows that the soundness criterion for work-
flow nets is too restrictive in the context of Web services compositions. It

318 6 Properties of Business Processes

Fig. 6.23. Example of workflow modules with merged communication places

is acceptable that certain parts of Web service A will not contribute to the
overall composition.

It is also interesting to note that the two branches of Web service A are
alternative, so that for each case one of these branches will be taken. However,
due to the composition with a second Web service, one branch is completely
ruled out.

If a composition of Web services is weak sound then the freedom from
deadlock and the proper termination of the composition are guaranteed. No-
tice that weak soundness—just like soundness—is based on a fairness assump-
tion: For each decision, all alternatives will be chosen eventually. This fairness
assumption can to some extent be ruled out by the composition with another
Web service. As shown in the example, certain decisions will simply never
be made, due to the communication behaviour of the process orchestrations
attached.

6.7 Lazy Soundness

The different kinds of soundness criteria discussed so far are tailored towards
specific application environments, where the original soundness appears to be
too restrictive: relaxed soundness allows business process models that expose

6.7 Lazy Soundness 319

Fig. 6.24. Example of weak sound workflow net

deadlock behaviour in some cases; but each activity can also participate in a
correct process instance. Weak soundness disallows deadlocks, but it allows
certain parts of the process not to participate in any process instance.

When investigating the soundness criterion for certain control flow pat-
terns, called critical control flow patterns, it turns out that process models
using these patterns cannot be sound. In addition, they cannot be weak sound.
Lazy soundness has been proposed as a new soundness criterion for these crit-
ical control flow patterns.

6.7.1 Critical Control Flow Patterns

In this section sample process models with critical control flow patterns are
investigated: Discriminator, N-out-of-M join, and Multiple Instances without
Synchronization.

320 6 Properties of Business Processes

Discriminator

A sample process with the discriminator pattern is shown in Figure 6.25. In
this process, a manufacturer requests offers from a number of suppliers. The
discriminator is used to realize a process in which the first offer is accepted,
and the respective order is sent; other messages that might come in afterwards
will be ignored.

Fig. 6.25. Ordering process with discriminator pattern

The process is distributed over four parties, a manufacturer and three
suppliers. The manufacturer starts the process and sends requests for offers
to the suppliers. It is assumed that all suppliers share the same behaviour: they
either respond by sending an offer or do not respond. The process orchestration
of Supplier 1, as well as its interaction with the process orchestration of a
Manufacturer, is shown in Figure 6.25.

The process orchestration of the supplier is explained as follows. After
receiving a request from the manufacturer, an exclusive or gateway is used to
decide about sending an offer. In case an offer is sent, the supplier expects to

6.7 Lazy Soundness 321

receive an order in the Receive Order activity. If, however, no order arrives
within a defined time interval, it is assumed that the manufacturer will not
respond—represented by the timer event.

The process orchestration of the manufacturer starts by its requesting
offers from suppliers. Then, the manufacturer expects the arrival of messages
containing the offers sent by the suppliers. It is assumed that the manufacturer
is in urgent need for material, so that the first offer that arrives will be taken.
This policy is realized by the discriminator pattern. Offers received after the
discriminator fired will be ignored.

To see why this process is not sound, consider a concrete process instance
based on the process model shown. Assume that the request messages have
been sent and that Supplier 1 was the first to respond by sending an offer.
Consequently, the discriminator fires, an order is sent to Supplier 1, and the
end event of the manufacturer’s process is reached.

If an offer is received from Supplier 2 after the manufacturing process
has reached the end event, then this message is received by the Get Offer 2
activity. This activity, however, occurs after the end of the process instance has
been reached! This is an example of improper termination, because activities
are executed after the process has reached its end. Therefore, the process
cannot be sound.

For the same reason, the process model cannot be weak sound. But the
process is relaxed sound, because relaxed sound only makes sure that there
are executions that are sound. Rather than formally proving this, we argue
that the process is relaxed sound.

In order to do so, we have to show that each activity can participate in a
sound process instance, that is, a process instance that reaches the final state.
Note that once the final state has been reached no activities can occur in the
process.

Assume that Supplier 1 sends an offer and Supplier 2 does not send an
offer. In this case, the process reaches the final state, because the manufac-
turer sends the order to Supplier 1, who can then terminate properly. Also,
Supplier 2 can terminate properly because no further activities are required
after deciding not to respond to the request.

If both suppliers send an offer, and Supplier 1 is the first to do so, then
the manufacturer sends an order to Supplier 1. If the message by Supplier 2
arrives and the Get Offer 2 activity can terminate before the overall process
terminates, then Supplier 2 will detect that no message will come in.

Also, in this example, the overall process reaches the final state. Since these
considerations hold for both suppliers (swapping Suppliers 1 and 2 would
have analogous results), we can conclude that all activities can participate in
a process instance that reaches the final state: the process is relaxed sound.

322 6 Properties of Business Processes

N-out-of-M Join

A similar process model with an N-out-of-M join control flow pattern is shown
in Figure 6.26. This process is a variant of the process discussed above. The
business logic implements a process in which four offers are invited, and as
soon as two offers have arrived, the manufacturer decides which offer to accept.
Each offer, however, will get compensation, realized by the Pay offer activities.
For ease of presentation, only one supplier is shown.

Fig. 6.26. Ordering process with N-out-of-M join

This process is not sound, because after the final state has been reached
additional offers can be received by the manufacturer, and the respective
payment activities are performed. These payment activities are ignored by the
join, so that no deadlocks or livelocks will occur after the process terminates.
In workflow net terminology this means that a state is reachable in which
there is a token in the final place o while there are additional tokens in the
net. Therefore, this process model is not sound.

Nevertheless this process model represents valid process instances, since
the business goals are met: out of two offers an order is selected, and finally
all offers which have been received have been compensated for.

6.7 Lazy Soundness 323

Lazy soundness is designed to capture this semantics. The pay offer activi-
ties are performed after the process has completed; these activities are known
as lazy activities.

Multiple Instances without Synchronization

We now investigate the multiple instances without synchronization pattern
with respect to the lazy soundness criterion. Assume a process model in which
at some point multiple instances are created that are not synchronized.

This means that the process flow continues right after the start of these
multiple instances, as discussed in Section 4.1. Since there are no assumptions
on the run time of the activity instances and these instances are not synchro-
nized, it is obvious that the final activity of the process can be completed
while some of the multiple instances created are still running. Therefore, pro-
cess models featuring the multiple instances without synchronization pattern
cannot be sound.

We can even argue that these instances are not even structurally sound,
that is, not all nodes are on a path from i to o, in workflow net terminology.
An edge j → k means that j needs to terminate before k can start. If j is
an activity with the multiple instances without synchronization pattern, then
k effectively starts before j has terminated. Therefore, the semantics of the
control flow connector is violated. The multiple instances activity j spawns
the instances j1, j2, . . . , jn, each of which is connected only to j. This means
that these instances do not have any outgoing edges. Therefore they cannot
be on a path from i to o, violating the workflow net property of structural
soundness.

An example involving the multiple instances without synchronization pat-
tern is shown in Figure 6.27, where in the upper part there is a process model
shown with sequential execution of activities A, B, and C, where B is a mul-
tiple instances without synchronization activity.

Fig. 6.27. Multiple instances without synchronization pattern, process model and
process instance

324 6 Properties of Business Processes

In the lower part of Figure 6.27, a concrete process instance is shown,
where three instances b1, b2, and b3 are created. The creation is done by a
system activity mi(B), as discussed in Section 4.1. We can assume that this
system activity will spawn as many instances of b as required.

In the process instance shown, mi(B) spawns the three instances and—
since the instances are not synchronized—control is immediately transferred
to activity instance c, whose termination completes the process. It is obvious
that b1, b2, and b3 can still be running after the end event of the process has
been reached. Therefore, by the structure of this process, soundness is not
satisfied.

6.7.2 Lazy Soundness Definition

The critical control flow patterns discussed in the previous section have shown
that traditional soundness criteria are not appropriate for characterizing pro-
cesses using the discriminator, the N-out-of-M pattern, and the multiple in-
stances without synchronization pattern.

On the other hand, these patterns are quite useful for modelling business
processes, because situations like the ones shown in the examples are actu-
ally quite typical in real-world business processes. For instance, in business-
to-business scenarios multiple requests for offers are sent out, and receiving
responses for a proper subset of these requests is sufficient for the process to
continue.

These processes are neither sound nor weak sound. They can be relaxed
sound, but in environments with a high degree of automation in process en-
actment this is a rather weak soundness criterion, because it allows deadlocks
to occur before the final state of the process has been reached.

Therefore, a new sound criterion has been proposed: lazy soundness. Lazy
soundness relaxes weak soundness, because it allows activities to be executed
after the final state has been reached; however, deadlocks are not permitted
before the final state has been reached. Activities that are running after the
final state has been reached are known as lazy activities.

Consider the example shown in Figure 6.26, and assume that the offers
received from Suppliers 1 and 2 have led to the activation of the join. Further
assume that the offers from Suppliers 3 and 4 arrive only after the final event
has been reached. Then, receiving the offers for Suppliers 3 and 4 and paying
them are lazy activities.

These activities are carried out after the process has reached its final state.
However, the business goals are met by this realization, since in the business
scenario described all suppliers need to be paid for their offers. Lazy soundness
permits the occurrence of these activities, and the resulting process model is
lazy sound.

It is important to differentiate between the completion of a process instance
and its termination. By completion we mean the execution of the final node.

6.7 Lazy Soundness 325

By termination we mean the point in time when all activities of the process
have terminated.

Note that completion cannot occur later than termination, but a process
can complete (by executing the final node) before it terminates, due to lazy
activities that can still be active after the process has completed. Based on
these considerations, lazy soundness is characterized as follows. A structurally
sound process model is lazy sound if for each process instance the final node
is executed exactly once.

Lazy soundness can be formally defined as follows.

Definition 6.9 Let (PN, i) be a workflow system, with a workflow net PN =
(P, T, F). (PN, i) is lazy sound if and only if

• ∀M([i]
∗→ M)∃M ′ : M

∗→ M ′ ∧M ′(o) = 1

• ∀M([i]
∗→ M) : M(o) ≤ 1

�

The first bullet makes sure that from each state reachable from the initial
state [i] there is a continuation of the process that leads to a state in which
the final node is reached. Since the final node o has no outgoing edge, a token
in o will never leave this place. The second bullet defines that no state is
reachable in which there is more than one token in the final place. Therefore,
this definition of lazy sound makes sure that the final node is triggered exactly
once.

Lazy activities are allowed because when the state M ′ with M ′(o) = 1 is
reached, it is not ruled out that other places of the Petri net still have tokens.
These tokens can enable transitions that represent lazy activities.

To illustrate the definition of lazy soundness, we return to Figure 6.25.
This time we assume that two offers are invited and the supplier is selected,
who responds first by sending an offer. This behaviour is represented by the
discriminator pattern. A process instance is shown in Figure 6.28 by an event

Fig. 6.28. Process instance, illustrating lazy soundness

326 6 Properties of Business Processes

diagram. In this diagram, a process instance is represented in which the offer
by Supplier 1 is received first. The process instance continues with the firing
of the discriminator, followed by the sending of the order by the manufacturer.
The order is received by Supplier 1, and the process completes.

The completion of the process is represented by the state M ′ in the def-
inition of lazy soundness, with M ′(o) = 1. At this point in time, Supplier 2
decides to send an offer. This offer is received by the Get Offer 2 activity of
the manufacturer. As specified by the business policies of the manufacturer,
this offer will be compensated for, represented by the Pay Offer 2 activity
instance. These activities are lazy activities. They are executed after the pro-
cess instance has completed. As a result, from state M ′ states M ′′ �= M ′ are
reachable.

The execution of the order activity by the manufacturer marks the com-
pletion of the process instance of the manufacturer. Note that this activity
is executed exactly once, because the discriminator triggers its outgoing edge
only after its first incoming edge is activated. Incoming edges that are acti-
vated afterwards are ignored.

This property is also required by lazy soundness, because by stating that
∀M([i]

∗→ M) : M(o) ≤ 1 the definition makes sure that no state transition
ever puts another token in the final place, so that the completion of the process
instance is signalled exactly once.

6.8 Soundness Criteria Overview

To summarize the considerations on soundness in business process manage-
ment, the relationships between the different soundness properties are investi-
gated. While the soundness properties are developed in the context of different
formalisms, this section uses workflow nets for a concise specification.

It turns out that the soundness criteria are based on a few properties of the
structure of business processes. These properties can be combined in different
ways, resulting in different soundness properties.

Let PN = (P, T, F) be a workflow net. The soundness criteria are based
on the following criteria.

P1 Termination: The termination property makes sure that any process in-
stance that starts in the initial state will eventually reach the final state.
For every state M reachable from the initial state [i] there exists a firing
sequence leading from M to o:

∀M([i]
∗→ M) =⇒ (M

∗→ [o])

P2 Proper termination: The final state is the only state reachable from the
initial state in which there is a token in the final place. State [o] is the
only state reachable from state [i] with at least one token in place o:

∀M([i]
∗→ M ∧M ≥ [o]) =⇒ M = [o]

6.8 Soundness Criteria Overview 327

P3 No dead transitions: Each transition can contribute to at least one process
instance:

(∀t ∈ T) ∃M,M ′ : [i]
∗→ M

t→ M ′

P4 Transition participation: Each transition participates in at least one pro-
cess instance that starts in the initial state and reaches the final state:
For each transition t there exists a firing sequence from [i] to [o] in which
t participates:

(∀t ∈ T) ∃M,M ′ : ([i]
∗→ M

t→ M ′ ∗→ [o])

There are the following relationships between these properties.
Properties P1 and P3 imply P4, because P3 states that for every transition

t a state is reachable in which t is enabled. Assume that when t fires, state M ′

is reached. Property P1 guarantees that from any state reachable from the
initial state, the final state can be reached. This property holds in particular
for M ′. Therefore, property P4 follows.

Note that the converse of this implication does not hold, that is, P4 does
not imply P1 and P3. P4 only states that for each transition t there are states
M and M ′, such that firing of t in state M results in state M ′, from which
the final state can be reached.

By this definition it is not ruled out that t can be enabled in state M ′′,

such that M ′′ t→ M ′′′; but from the resulting state M ′′′, the final state is not
reachable.

From the definition of properties P3 and P4 it is obvious that P4 implies
P3. P4 states that there are no dead transitions (P3) and, in addition, that
for every state reachable by the firing of a transition t there is a continuation
of the process instance that leads to the final state.

The following propositions characterize the relationships between the
soundness properties.

Lemma 6.1 Soundness ⇔ P1 ∧ P2 ∧ P3 �

Properties P1, P2, and P3 together are used in the definition for soundness.
P1 guarantees that each process instance that starts in the initial state will
eventually reach the final state. When the final state is reached, there are
no tokens left in the net, defined by property P2; finally, each activity can
contribute to a process instance, defined by property P3.

Lemma 6.2 Weak Soundness ⇔ P1 ∧ P2 �

Weak soundness allows activities that cannot participate in any process in-
stance. However, it states that from each state reachable, the final state can
be reached and that at this point in time there are no tokens left in the net.

Lemma 6.3 Relaxed Soundness ⇔ P4 �

328 6 Properties of Business Processes

Relaxed soundness is defined by property P4. Since relaxed soundness permits
deadlocks in process instances to occur, property P1 does not hold for relaxed
sound processes in general. When the final node is reached, there can be tokens
left in the net; these tokens can be stuck in deadlock situations. Since P3 is
implied by P4, P3 also holds for relaxed sound processes.

An investigation of the relationship of the lazy soundness criterion with the
traditional soundness criteria is useful. Property P1 is not satisfied, because
there might be lazy activities, that is, activities that are performed concur-
rently to the completion of the process instance. Therefore, reaching the final
state [o] is not satisfied, because—in Petri net terminology—there might be
additional tokens in the net, reflecting lazy activities.

On the other hand, lazy soundness guarantees that the final activity is
executed exactly once, marking the completion of the process. This property—
to some extent—matches the semantics of P1, because it makes sure that every
process instance will complete and that there are no deadlocks that prohibit
a process instance from doing so. This discussion also applies to property P2:
lazy soundness violates P2, due to lazy activities. In lazy sound processes
there might also be dead activities, violating properties P3 and P4.

Bibliographical Notes

Soundness of workflow nets has been introduced in van der Aalst (1998); fur-
ther investigations on finding control flow errors in workflow specifications
are reported in van der Aalst (2000). Structural correctness criteria of pro-
cess models can be analyzed using the workflow analyzer Woflan, described
in van der Aalst (1999) and Verbeek et al. (2001). Woflan is able to read pro-
cess models specified in different process modelling languages; after internally
translating the process models to a workflow net representation, the soundness
properties of the process models can be analyzed.

Checking the various soundness properties is also possible with the BPM
Academic Initiative software run by Signavio. It uses the soundness checking
functionality provided by Lohmann and Wolf (2010) via a Web services inter-
face. An introduction to the BPM Academic Initiative with an analysis of its
process model repository can be found in Kunze et al. (2011).

Relaxed soundness was the first of the weaker soundness criteria proposed.
It was published in Dehnert and Rittgen (2001). Based on this work, Siegeris
and Zimmermann (2006) introduce the composition of processes, while allow-
ing us to validate relaxed soundness. Weak soundness is introduced in Martens
(2003b), where the composition of Web services is also addressed.

The general idea of lazy soundness is introduced in Puhlmann and Weske
(2006b); a thorough analysis of lazy soundness and a formalization in the
π-calculus is reported in Puhlmann (2007). Interaction soundness is intro-
duced in Puhlmann and Weske (2006a); it is based on lazy soundness and
takes into account the specific properties of service-oriented architectures, in

6.8 Soundness Criteria Overview 329

which business partners can be bound dynamically, that is, at run time of the
process instances. The π-calculus provides link passing mobility, a concept
that represents well the dynamic structures that are found in dynamic service
landscapes.

Object lifecycle conformance is introduced in Küster et al. (2007), where
also techniques for generating business process models from object lifecycles
are investigated.

7

Business Process Management Architectures

Following our discussion of the evolution of enterprise systems architectures
in Chapter 2, this chapter investigates business process management architec-
tures and evaluates them with respect to their properties. It is organized as
follows.

Section 7.1 looks at workflow management systems architectures by dis-
cussing the workflow reference architecture, an architectural blueprint for
workflow management systems. Section 7.2 introduces

flexible workflow management by an approach that facilitates the modifi-
cation of process models while process instances are active.

Service-oriented architectures have gained increasing popularity recently.
In Section 7.3, this new architecture paradigm as well as Web services as the
current implementation of service-oriented architectures are sketched. Web
service composition is introduced as a realization vehicle for system workflows
whose activities are realized by Web services. In Section 7.4, advanced service
composition is investigated.

Data-driven approaches to the flexible enactment of business processes are
discussed in Section 7.5. This approach for enactment of human interaction
business processes uses data dependencies to control process enactment; it
provides knowledge workers with options to design the enactment of their
processes and provides additional flexibility without hampering the overall
correctness of the business process.

7.1 Workflow Management Architectures

In Section 2.4, workflow management systems have been identified as an im-
portant step in the evolution of business process management systems. This
section investigates the architecture of workflow management systems.

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 7,
© Springer-Verlag Berlin Heidelberg 2012

333

http://dx.doi.org/10.1007/978-3-642-28616-2_7

334 7 Business Process Management Architectures

7.1.1 Build Time and Run Time

In traditional workflow management, the separation of build time and run
time is essential. During the build time of a workflow, a workflow model is
specified completely, typically using a graphical workflow modelling tool.

Workflow models are the blueprint for implemented business processes in
workflow management systems. Workflow models need to be in line with busi-
ness process models that capture the operational business processes; they ex-
tend the latter with technical information required to make them executable.

When a workflow model has been created that satisfies the requirements
imposed by the business process, workflow modelling has completed. Depend-
ing on the workflow management system used, the workflow model is repre-
sented by a script, written in the workflow language of that system. Workflow
models can also be stored in a database or workflow model repository. In any
case, the workflow modelling tool is terminated after workflow modelling has
completed, that is, after the build time of the workflow.

When a business process starts for which a workflow is defined that imple-
ments it, a workflow instance is created by the workflow management system;
this workflow instance is based on a predefined workflow model. In the next
step, the workflow instance is started, and the run time starts. The organi-
zation of the phases in build time and run time is shown in Figure 7.1, ab-
stracting from the relationships of the workflow engine to the software layer
and—in the case of human interaction workflows—to process participants.

Fig. 7.1. Build time versus run time of a workflow

Workflow instances typically live in the main memory of the process en-
gine, which controls the execution of workflow instances. The process engine
decides for a given workflow instance which activities can be started, and it
communicates with workflow client applications, which are accessed by process
participants.

In this traditional workflow scenario, there is no link between a workflow
instance and the workflow model that was used to create it. This property

7.1 Workflow Management Architectures 335

implies that changing the workflow model does not affect running workflow
instances based on that workflow model. As a result, a strict separation be-
tween the build time of a workflow model and the run time of the respective
workflow instances is realized.

The situation described is similar to traditional programming, where a
program is coded in a programming language, compiled to executable code
(build time), and executed (run time). Workflow modelling can be regarded as
a form of programming “in the large”, such that the workflow model represents
a program written in a workflow language.

To execute such a workflow program, the run time environment of the
workflow management system is used. As a result, workflow instances corre-
spond to program executions, realized by operating system processes. When
a workflow instance is created and its execution is started, the link of the
workflow program to the workflow execution is no longer present. In tradi-
tional programming there is no easy way to change the program in execution
by changing the program code. These considerations will be discussed further
when flexible workflow management systems are addressed in Section 7.2.

7.1.2 Workflow Management Systems Architectures

Workflow management systems architectures organize the subsystems that are
involved in the design and enactment of both system workflows and human
interaction workflows. A generic workflow management systems architecture
is shown in Figure 7.2.

Observe that this architecture is very similar to the conceptual systems
architecture introduced in Section 3.11, used as a basis for the event-based
characterization of process instances. Therefore, the workflow systems archi-
tecture presented in this section is integrated well with the definition of process
models and process instances in Section 3.5.

The architecture contains the following subsystems and roles, whose re-
sponsibilities are described as follows:

The Workflow Modelling subsystem provides means to model the technical
aspects of implemented business processes. For each activity in the operational
business process model realized by software, a detailed specification of the
execution environment of the software needs to be provided.

The workflow models are stored in a Workflow Model Repository. This
repository contains the set of workflow models of the company and is therefore
an important asset.

The Workflow Engine is responsible for enacting workflow processes. If an
event occurs during the daily business of the company for which a workflow
model is defined, the workflow engine creates a new workflow instance based
on the defined workflow model.

Depending on whether a system workflow or a human workflow is associ-
ated with the event, different subsystems of the workflow management systems
architecture are required.

336 7 Business Process Management Architectures

Fig. 7.2. Workflow management systems architecture

If a system workflow is created, the workflow engine uses the workflow
model to call the invoked applications defined for the system workflow. These
calls are performed according to the process structure defined in the workflow
model. The workflow engine is also responsible for transferring data between
calls to different applications.

Since human interactions are not available in system workflows, the work-
flow engine can be regarded as an interpreter of workflow models. These work-
flow models need to be executable, so that complete information on the appli-
cations to invoke, including the technical execution environment, is required.

In the case of human interaction workflows, the workflow instance contains
both automatically invoked applications and human interactions. These hu-
man interactions are performed using the Graphical User Interface subsystem.
Organizational information on the Process Participants, their skills and com-
petencies, can be used by the workflow engine to offer work only to knowledge
workers that are available and capable of performing these activities.

7.1.3 WfMC Reference Architecture

The generic workflow management systems architecture introduced in the
previous section discusses the constituents of typical workflow scenarios. To
provide a common view on workflow management systems architectures, the
Workflow Management Coalition—an interest group in which vendors and

7.1 Workflow Management Architectures 337

users of workflow management systems are organized—developed the WfMC
Workflow Reference Architecture.

This architecture provides a high-level systems architecture blueprint for
workflow management systems; it is shown in Figure 7.3.

Fig. 7.3. Workflow reference architecture, proposed by the Workflow Management
Coalition

The different subsystems of this reference architecture are discussed with
their roles and responsibilities. The workflow enactment service—the WfMC
term for workflow engine—is the central component of the architecture. Inter-
faces describe how the other subsystems connect to the workflow enactment
service.

Process definition tools are used for workflow modelling; they are attached
to the central component by Interface 1. The goal of this interface is to enable
tools developed by different workflow system vendors to work in a standardized
representation of a business process.

Interface 1 is specified in the XML language XML Process Definition Lan-
guage, or XPDL. This language is based on a metamodel approach, in which
the concepts of interacting business processes of multiple participants are
defined. The XPDL package metamodel can be used to represent business
process diagrams expressed in the BPMN.

The metamodel includes classes for pools, lanes, processes, participants,
and message flow. The internal structure of processes is represented by a
process metamodel. In addition to processes and activities, different types
of activities and transitions are modelled to represent control flow in pro-
cess models. The specification document also defines a serialization of process
models to XML that includes conceptual information as well as graphics in-
formation used for rendering business process diagrams.

338 7 Business Process Management Architectures

During the enactment of human interaction workflows, the persons in-
volved receive work items that inform them about activities due for execu-
tion. This functionality is realized by workflow client applications, attached
to the enactment service by Interface 2. The goal of standardizing Interface 2
is to allow workflow client applications of different vendors to talk to a given
workflow enactment service.

Interface 3 provides the technical information to invoke applications that
realize specific workflow activities. This interface should facilitate invocation
of applications across heterogeneous software platforms. The reference ar-
chitecture also provides an interface to other workflow enactment services.
Interface 4 is used for interoperability between different workflow enactment
services. The administration and the monitoring of workflows are handled
by a dedicated component, accessed by Interface 5. These interfaces are not
specified in detail, and their implementations remain in the prototypical stage.

The reference architecture of the Workflow Management Coalition is an
important contribution to a common understanding of the components of
workflow management systems and their relationships. The goal of interoper-
ability between workflow management systems developed by different vendors,
however, has yet to be achieved.

Recent achievements in service-oriented architectures fuel standardization
efforts in general. The uptake of these achievements by the Workflow Manage-
ment Coalition and the development of the XML Process Definition Language
are important steps towards solving the workflow management system inter-
operability issue.

7.2 Flexible Workflow Management

Traditionally, workflow management deals with controlling the execution of
business processes according to predefined workflow models that formalize
activities, their process structure, and their technical realization. As discussed
above, traditional workflow management systems are based on a separation
of build time and run time of a workflow, so that after process instances have
started, there is no well-specified link to the process model.

This approach is well suited to supporting business processes with static
control structures, that is, processes that are modelled once and that are ex-
ecuted in a routine fashion. In business process scenarios in highly dynamic
environments, however, it turns out that while some business processes have
a static structure, others do not. The need to respond to new market require-
ments, not anticipated during build time, leads to new requirements regarding
the flexibility of workflow management systems.

In this section, changes to the structure of executing process instances are
investigated, also known as dynamic adaptations. This term is appropriate,
because running process instances will be dynamically adapted to new process
models that realize the new market requirements.

7.2 Flexible Workflow Management 339

Since dynamic adaptability was not traditionally a topic in workflow man-
agement, the respective functionality is not adequately supported in commer-
cial workflow management systems. This is an obstacle for the deployment
of workflow applications in real-world organizations, because often situations
are encountered which have not been foreseen at design time.

If the workflow process cannot be continued as specified in the workflow
model, process participants in many cases perform certain activities outside
the scope of the workflow management system, for instance, by accessing an
information system to get hold of additional information. Once this infor-
mation is found, it is manually transferred to the workflow application, so a
potential source of error emerges.

Process participants might also get frustrated if workflow activities are not
required for a particular case, and the system does not allow us to skip these
undesired activities.

7.2.1 Conceptual Design

This section presents concepts for the design of a workflow management sys-
tem supporting controlled dynamic adaptations of running workflow instances
to new workflow models.

Object modelling techniques are used to develop a metamodel, in which
relevant entities are represented by objects in the software system, encapsulat-
ing their structure and behaviour. Workflow model objects, workflow instance
objects, and objects describing the organizational and technical execution en-
vironments of workflows are at the centre of attention.

Fig. 7.4. Metamodel of flexible workflow management system, simplified version

The workflow metamodel is shown in Figure 7.4. The workflow class is
the central class; it contains workflow objects that are either workflow models

340 7 Business Process Management Architectures

or workflow instances, represented by the recursive InstanceOf relationship
relating workflow objects.

The hierarchical structure of workflows is modelled by the Nesting rela-
tionship class, which defines a relationship between a complex workflow and
a workflow, which can be complex or atomic. Workflow models and workflow
instances are identified by different states of workflow objects.

Based on the graph-based workflow language introduced in Chapter 4.6,
and on the workflow metamodel shown, dynamic adaptations of workflow
instances are addressed. There are numerous questions which have to be an-
swered in this context. The most prominent ones are given in the following
list:

• How can dynamic adaptations of running workflow instances be designed
and implemented in a workflow management system?

• How are dynamic adaptations controlled, and which correctness criteria
are suitable? In particular, which rules govern whether a workflow instance
can be adapted to a new workflow model?

• What is the scope of a dynamic adaptation, that is, which workflow in-
stances should be adapted to a new workflow model?

• Who is permitted to perform dynamic changes, and under what condi-
tions?

In the remainder of this section, issues related to the first, second, and third
items will be investigated.

Dynamic adaptations need to be embedded in an organizational frame-
work, which specifies who is allowed to change the structure of workflow in-
stances, and what the scope of these dynamic adaptations is. By defining
appropriate roles and providing persons with the required competencies, the
organizational policies can be realized.

In Section 7.1, the traditional approach to workflow enactment, based on
a separation of the build time and the run time was discussed. This approach
is not feasible for dynamic changes of the structure of running workflow in-
stances, so an alternative approach is required. This approach is based on
the run time interpretation of workflow models, similarly to interpretation
approaches in programming languages.

In the interpretation-based approach, there is no strict separation of a
workflow’s build time and its run time, because a workflow instance is con-
trolled by interpreting its workflow model. Hence, there can be alternations
between workflow modelling phases and workflow execution phases for a
given workflow instance, that is, between the build time and the run time.
In these alternations, workflow models can be augmented, and due to the
interpretation-based approach used, these changes immediately affect the
workflow instance.

However, the changes affect only those workflow instance for which the
change is relevant. If parts of the workflow model already completed by the
workflow instance are changed, then the changes to the workflow model are

7.2 Flexible Workflow Management 341

not relevant. These considerations lead to consistency criteria for dynamic
adaptations, discussed below.

The interpretation approach allows a flexible assignment of workflow in-
stances to workflow models, which may be subject to changes. This means that
at different points in time, a workflow instance can be controlled by different
workflow models. However, at each point in time, each workflow instance is
assigned a single workflow model.

7.2.2 Dynamic Adaptations by Example

Workflow models are formal representations of the automated parts of business
processes that are designed to meet the business goals. A workflow instance is
therefore correct if it satisfies the constraints imposed by the workflow model.
Examples of these constraints are control flow, data flow, and roles used to
specify persons who perform workflow activities.

This general notion of correctness in workflow systems is rather informal,
yet adequate, since the correctness is defined by the domain experts in busi-
ness process models and—on the workflow side—in workflow models. As a
result, formal and generic correctness criteria other than the different types
of soundness criteria discussed in Chapter 6 are not available.

Fig. 7.5. Workflow model s and modified workflow model s′

Since the correctness of workflows is specified by workflow models, and
workflow instances are automated parts of application processes, the workflow
management system has to guarantee that the workflow instance satisfies the
criteria defined by the workflow model.

There are also correctness considerations in the context of dynamic adap-
tations. They will be the focus of this section. An example of a dynamic
adaptation shows the rationale behind our considerations.

342 7 Business Process Management Architectures

In Figure 7.5, a workflow model s and a modified workflow model s′ are
shown. Note that s′ was derived from s by adding activities in the concurrent
branches. Although the example abstracts from a concrete business process,
and technical aspects like parameters and start conditions, the overall struc-
ture of the workflow model suffices to present the general idea of dynamic
adaptation.

Fig. 7.6. Workflow instance i based on workflow model s with state information

In Figure 7.6, a workflow instance based on workflow model s is shown. The
state of this workflow instance is represented by shading; activity instances
that have terminated are shown in dark grey shading; light grey shading shows
a running activity instance; and an activity instance in the init state is shown
without shading.

The general idea of dynamic adaptations is defined as follows.

Definition 7.1 A workflow instance i is adaptable to a workflow model s′ if
and only if there is a continuation of i such that i complies with s′. �

This definition is used to check whether workflow instance i as shown in
Figure 7.6 can be adapted to workflow model s′. In the workflow instance
shown, the adaptation is not possible, since activity instance e has already
started and is in the running node.

To comply with the new workflow model s′, additional activity instances
have to be executed before e can start, namely activity instances g, h, and
k. Hence, there is no continuation for workflow instance i that satisfies the
control flow constraints imposed by the new workflow model. Consequently, i
is not adaptable to s′.

Workflow instance j, shown in Figure 7.7, is investigated next. As shown,
activity instance e has not yet started. Since the activity instances already
started comply with the ones in the new workflow model s′, there is a contin-
uation of j that is consistent with s′.

After the check is performed, new activity instances can be created, as well
as their embedding in the context of the workflow instance. When this is done,
the execution of the dynamically adapted workflow instance can resume. The
resulting workflow instance is shown in Figure 7.8.

7.3 Web Services and their Composition 343

Fig. 7.7. Workflow instance j based on workflow model s with state information

Fig. 7.8. Adapted workflow instance j

While this section discusses basic aspects in flexible workflow management,
many extensions are possible. For instance, by compensating completed work-
flow activities and, thereby, rolling back the workflow instance, more dynamic
adaptations can be allowed.

7.3 Web Services and their Composition

While service-oriented computing has been discussed from a user point of
view in Chapter 2, the architectures behind this new computation paradigm
are investigated in more detail.

7.3.1 Web Services Technology

Web services are the current realization of service-oriented computing. While
not all features of service-oriented architectures are satisfied by current Web
services technology—such as dynamic service matchmaking and binding—it
provides an important milestone in the quest towards service-oriented archi-
tectures. In Mohan (2002), Web services are characterized as follows.

Web services are self-contained, self-describing, modular applications
that can be published, located, and invoked across the Web. Web ser-
vices perform functions, which can be anything from simple requests

344 7 Business Process Management Architectures

to complicated business processes. Once a Web service is deployed,
other applications (and other Web services) can discover and invoke
the deployed service. XML messaging is used to interact with a Web
service.

Fig. 7.9. Main World Wide Web Consortium Web services recommendations

Commonly accepted standards are a key requirement for a successful im-
plementation of service-oriented architectures. Web services standards are put
forward as recommendations by the World Wide Web Consortium, W3C. The
recommendations that provide the underpinning of Web services developments
are shown in Figure 7.9, with their role in the service-oriented architecture
consisting of service provider, service requestor, and service registry.

• SOAP defines an XML messaging protocol for communicating services.
SOAP takes advantage of standards to translate a SOAP message to an
actual service invocation and to translate the return values of a service
invocation back to a SOAP message.

• Web Services Description Language or WSDL introduces a format to spec-
ify Web services. WSDL serves the same purpose as interface definition lan-
guages in standard middleware environments. However, WSDL features
a set of extensions to account for the missing centralized knowledge on
transport and addressing, such as service endpoints, required to invoke
Web services.

• Universal Description, Discovery, and Integration, or UDDI, provides an
infrastructure to publish information about services and their providers.
The UDDI application programming interface provides access information
to the registry, for instance, to register a service or to search for appropriate
services or service providers.

The Web Services Description Language can be used to specify how a
service can be used, that is, a service contract. This contract can be separated
into a logical contract and one or more physical contracts.

7.3 Web Services and their Composition 345

The logical contract defines a public interface of the service, which is in-
dependent of the service implementation. It is also independent of message
formats and transport protocols used to invoke the service. These aspects are
handled in the physical contract.

There can be multiple physical contracts for a service, detailing how the
service can be invoked. While SOAP over the hypertext transfer protocol is
the most prominent way of invoking a Web service, mail protocols and other
transport protocols are also feasible.

Fig. 7.10. Role of WSDL in Web service invocation

The structure of a service invocation and the role of the Web Services
Description Language are shown in Figure 7.10, where the logical contract
and physical contract of a service description are shown.

The provider of a Web service is responsible for preparing the WSDL file
of the service. In order to invoke a Web service, service requestors need access
to the WSDL specification, typically by using a service registry.

The communication of the service requestor with the service provider is
also shown in Figure 7.10. The service requestor creates a SOAP message,
using the information in the logical contract of the WSDL specification. The
information in the physical contract is used to determine the appropriate
message encoding and the transport protocol.

The message is sent to the service endpoint, which is specified in the
physical contract of the WSDL file. The service provider receives the message
and invokes the software that implements the service. If a response message

346 7 Business Process Management Architectures

is defined for the invoked Web service, a SOAP message holding the return
values is sent to the service requestor, completing the Web service execution.

7.3.2 Web Services Composition

The Web services standards discussed so far provide the ability to define and
invoke services, realizing a loose coupling of services. Service composition is
an important concept to develop applications on the basis of existing services;
the general idea was introduced in Section 2.5.4. Service compositions describe
how a set of individual services are related to each other, that is, they describe
process structures. As a result, a service composition contains a set of services,
each of which realizes a process activity.

Web services composition is a concrete realization of these concepts; it can
also be regarded as an implementation of system workflows (Section 2.4) in
service-oriented software environments, based on Web services.

Service composition is a recursive concept: each service composition can
be specified as a Web service, using the Web Services Description Language.
Therefore, each service composition can participate as a building block in
other, higher-level service compositions, realizing a hierarchical structuring of
Web services.

The standard in Web services composition is the Business Process Lan-
guage for Web Services, WS-BPEL. It is the outcome of a merger of the Web
Services Flow Language by IBM and XLANG by Microsoft. To understand
WS-BPEL, it is instructive to investigate these ancestor languages.

Web Services Flow Language can be considered an XML serialization of
Flow Definition Language, the script language that was used in IBM’s work-
flow product, enhanced by concepts to access Web services. It is based on a
graph-based process language, where activities are ordered in an acyclic form
by control flow links.

Data dependencies are specified by data flow between activities. Process
behaviour is specified by transition conditions attached to control flow links.
This means that there is no explicit split and join behaviour defined. How-
ever, by attaching conditions, any splitting behaviour can be realized. The
graph-based language used in Flow Definition Language is similar to the one
discussed in Section 4.6.

XLANG is a block structured language that was used in BizTalk, Mi-
crosoft’s enterprise application integration software, focusing on the integra-
tion of heterogeneous back-end systems using processes. In block-structured
languages, a strict nesting of control flow blocks is used to structure business
processes. As a result, for instance, the paths following an and split can never
be combined by a join other than an and join.

The main features of these ancestor languages made their way to the Busi-
ness Process Execution Language for Web Services; WS-BPEL uses a block
structuring to organize service compositions, and links can be defined to ex-
press graph-like structures.

7.3 Web Services and their Composition 347

The language can be used to characterize both abstract processes and con-
crete processes. Abstract processes describe the externally visible behaviour
of a business process. They mainly serve communication purposes, so opera-
tional details are disregarded. On the other hand, concrete processes contain
information required to execute the Web services of the service composition.
The following types of activities are available in WS-BPEL.

• Invoke: Invoke an operation offered by a Web service; this invocation may
or may not have a response

• Receive: Wait for a message to arrive
• Reply : Send a reply in response to a receive message
• Wait : Wait for a specified time period
• Assign: Assign data values, for instance, from received messages to process

variables
• Throw : Indicate that an error has occurred; used for exception handling
• Terminate: Complete the process

Activities in WS-BPEL can be related to each other using the following control
flow structures.

• Sequence: Define a block consisting of an ordered sequence of activities
• Switch: Based on an expression, select a particular activity from a set of

possible alternatives
• Pick : Wait for a suitable message to arrive or for a time-out event. On

receipt of the message (or the time-out event), start a defined activity
• While: Execute a set of activities as long as a condition is evaluated to

true
• Flow : Concurrently execute a set of activities
• Link : Execution constraint between activities

An example of a business process expressed in WS-BPEL is graphically
represented in Figure 7.11. This example originates from the WS-BPEL spec-
ification (Oasis (2007)) and is adapted to focus on the main concepts.

The sample service composition is activated once a purchase order is re-
ceived. In this case, the initial price is calculated, production scheduling is
started, and a shipper is selected that will be used to ship the ordered prod-
ucts to the customer.

Since the selection of the shipper has implications on the price, the com-
plete price calculation can only be done after the shipper has been determined.
Once the shipper has been determined, the logistics can be arranged. The ar-
rangement of the logistics has implications on the production scheduling, so
that the final production scheduling can only be done once the logistics has
been arranged.

The block structuring of Web services compositions expressed in the WS-
BPEL language is represented in Figure 7.11. The process consists of a se-
quence consisting of three blocks, two of which are process activities (Receive
Purchase Order and Invoice Processing) and one of which is a flow block with

348 7 Business Process Management Architectures

Fig. 7.11. Graphical representation of Web services composition in the WS-BPEL
format

an internal structure. The flow consists of sequences, each of which hosts two
activities.

In addition to the block structure, directed arrows are drawn between ac-
tivities: from the Decide on Shipper activity to the Complete Price Calculation
activity and from the Arrange Logistics activity to the Complete Production
Scheduling activity.

By these links, the business logic discussed above can be represented: be-
cause shippers provide shipping services at different costs, the complete price
calculation can only be done when the shipper is determined, and production
scheduling can only be started when the logistics have been arranged.

Figure 7.12 shows a high-level view on the purchase order Web services
composition, where the communication behaviour of the service composition
with the individual Web services is shown.

The purchase order process is invoked by receiving a purchase order mes-
sage sent by a business partner, identified by the term purchasing. (Observe
that technical aspects are not detailed, for instance, the characterization of
business partners that act as providers of Web services.) The purchase order
process uses three Web services: invoicing, shipping, and scheduling. The oper-
ations provided by these services as well as the WS-BPEL code to orchestrate
these services are discussed next.

Figure 7.13 shows the structure of the WS-BPEL file that captures the
process orchestration, abstracting from its XML representation. Observe that
the block structuring as shown in Figure 7.11 is reflected by the structure of

7.3 Web Services and their Composition 349

Fig. 7.12. Communication behaviour of purchase order WS-BPEL process

the WS-BPEL representation. While WS-BPEL uses an XML format with
the respective nested elements, the simplified notion in Figure 7.13 uses in-
dentation for structuring.

Links can be used to define execution ordering between activities that
could be executed independently from each other, if no links were defined.

In the example, the links are defined in the flow block by, for instance,
link name = ship-to-invoice. The source and target nodes of this link are
defined for the activities. For instance, by defining source ship-to-invoice

of the Decide on Shipper activity and target ship-to-invoice of the Com-
plete Price Calculation activity, an execution ordering of these activities can
be established.

Service Composition in Enterprise Application Integration

For a better understanding of Web service composition in enterprise appli-
cation integration scenarios, a sample process is investigated, dealing with
the processing of a purchase order. The enterprise scenario in which multiple
legacy systems contribute to the realization of a business process activity was

350 7 Business Process Management Architectures

Fig. 7.13. Structure of Web services composition expressed in WS-BPEL (simpli-
fied)

discussed in Section 2.4. Figure 7.14 extends these considerations by assigning
Web services standards to the software entities.

In this example, two legacy systems with proprietary interfaces I1 and I2
and one system with a WSDL interface S3 are shown. The enterprise applica-
tion integration middleware provides service-enabling of legacy applications,
so that the resulting services S1 and S2 can be exposed as Web services,
described by WSDL files.

The Analyze Order Service uses these services to realize a composed ser-
vice. The term composed service refers to a service that is realized by a service
composition. The Analyze Order Service not only uses Web services provided
by the enterprise application integration middleware, but also a Web service
S3 that is directly available from the Order 324 system.

7.3 Web Services and their Composition 351

Fig. 7.14. Web services standards in service-enabling

The composed Analyze Order Service can be realized in different ways.
Either a traditional programming language like Java or C# can be used to
realize the application logic, or a service composition language can be em-
ployed.

As discussed above, the Business Process Execution Language for Web
Services allows directly implementing the process structure in which the un-
derlying services are orchestrated. Graphical programming tools are available
to express the process structure. These tools generate a WS-BPEL file that
represents the executable process.

At run time, WS-BPEL engines control the execution of the composed
service. This is done by invoking the Web services according to the process
orchestration, reacting to error situations, collecting replies, and so on, as
specified in the executable WS-BPEL file.

The steps involved in the definition and enactment of a service composition
using WS-BPEL are shown in Figure 7.15. There are Web services S1, S2, and
S3 available whose WSDL specifications are stored in a registry. The designer
of the composed service uses a WS-BPEL editor to assemble Web services.
She might use a graphical editor that supports graphical modelling of the
process and provides an export functionality to the WS-BPEL format.

352 7 Business Process Management Architectures

Fig. 7.15. Composed service design and enactment using Business Process Execu-
tion Language

WSDL specifications of Web services provide an executable process speci-
fication. In step (1), the WS-BPEL editor retrieves this information from the
registry. Once the designer has finalized the service composition, the result-
ing WS-BPEL file is generated (2a). The composed service can now be made
available by storing in the registry the respective WSDL file that describes
how this new service can be used (2b).

When the composed service is executed, a WS-BPEL engine reads the
respective WS-BPEL specification (3). During the enactment of the composed
service, the services are invoked in sequence, as specified in the sample WS-
BPEL excerpt, as indicated by messages 4a through 6b.

7.4 Advanced Service Composition

So far, business process activities have been described by simple terms. What
is actually meant by these terms, like AnalyzeOrder, is determined by the
reader. The intention of the terms used by the process designer and the se-
mantics associated with these terms by the process participants is, hopefully,
similar.

To improve the understanding of business process diagrams at a non-
technical level, textual explanations are associated with business process mod-
els, expressed in, for instance, event-driven process chains. In case there are
ambiguities in a process model or certain process parts are not clear, the
process participant can ask the process designer about the intended meaning.

7.4 Advanced Service Composition 353

The process designer will explain the rationale, and the process participant
will comprehend. In some cases, these discussions might lead to a refinement
of the process model, since the process participant might have identified an
unclear and ambiguous part in the process model.

In this book we are very much interested in business processes that are
enacted in software. Services can only be composed in a correct way, if they
operate on the same domain concepts. For instance, a service that returns
customer data can be combined with a service that takes customer data as
input. In this case, they both operate on the same domain concept, that is,
the customer.

As discussed in Section 7.3, WSDL provides a syntactic interface descrip-
tion language, detailing the data types of input and output parameters. Since
the Web services that contribute to a service composition have most likely
been developed independently of each other, the data types of these services
will, in most cases, not match.

Typically, these syntactic differences are identified and the resulting prob-
lems are solved by system architects and software developers, using, for in-
stance, data mapping techniques. If compositions involving many services need
to be developed, considerable overhead can be expected due to heterogeneous
data types used by the Web services.

A simple example shows that syntactic integration is not sufficient for
integrating services with each other. We assume that a certain product needs
to be purchased and that there are two services that return the price of the
product. Assume also that the product can be identified by a unique product
identifier.

A price-finding application invokes the services with the identifier of the
desired product. Both services return values. Assume the textual descriptions
of these services indicate that the services return the price in Euros. Note that
this information about the currency is not available from the return parameter
price of the service in WSDL file.

Even parameter names like europrice do not help much, since the user of
the service cannot be sure that the price is really in the Euros currency.

There might be additional semantic differences in the data returned by
services. Assume that one service returns 120 and the other service returns
118. Since the concept of price is not agreed upon by the providers of the
services, the following issue might occur. The price 120 includes value-added
tax, VAT, while the price 118 does not.

As a result, the price that appears to be lower turns out to be higher
because it does not include VAT. Due to the different semantics of the return
parameters, the price-finding application returns a wrong result. This problem
is due to the missing semantics comparability of the two services. Since at a
software layer there are few options for asking the service provider about the
exact semantics of their services—as at the application process level—this is
a severe problem.

354 7 Business Process Management Architectures

Problems of this kind are the key motivation for the Semantic Web research
area, where the goal is to annotate data on the Web, so that its semantics are
well specified. Then the data can automatically be compared and integrated.

Based on Semantic Web concepts, recent research in Semantic Web Ser-
vices looks at rich semantic specifications of services that ease their automated
or semi-automated discovery and composition. Before semantic concepts are
addressed, the different options of service bindings are investigated.

7.4.1 Static and Dynamic Service Binding

The dynamic discovery of services is illustrated by a set of examples in the
context of a composite application in the travel domain. The travel application
allows customers to select trips, make reservations, and confirm reservations by
providing credit card information. In order to allow this, the travel application
invokes a credit card withdrawal service provided by a bank.

This example is used to explain different types of service matchmaking
and service binding, namely static binding and dynamic binding; service com-
position based on semantics will be discussed afterwards.

In static binding, the service is bound to the application at development
time. In the travel application example shown in Figure 7.16, the service
invocation in the travel application is represented by a rounded rectangle
marked CCW for credit card.

There are three service providers that have implemented a credit card
withdrawal service, all of which can be used by the travel application. These
providers are BankA, BankB, and BankC, representing any institutions that
provide such a service. (The services provided by the organizations are de-
picted by small circles, as with interfaces in UML.)

The question that developers face now is which of the three implemen-
tations of the credit card withdrawal service should they decide to use? And
when should this decision be made? The former question is subject to existing
legal contracts between the organizations involved as well as to costs associ-
ated with using a particular credit card withdrawal service implementation.

The latter question can be reformulated to the question about when to bind
the credit card withdrawal service specification to the service implementation.

In a static binding, the external service implementation is bound to the
travel application at development time. This means that the use of the credit
card withdrawal service by BankB is hardcoded in the travel application.

Today’s Web services technologies provide valuable information for coding
this integration. Service specifications in the Web Services Description Lan-
guage provide the information on how a particular service is invoked. Based
on the textual and technical description of the service, the developer of the
travel application can provide the mapping of the internal variables to the
data that the external service requires.

Ambiguities in service description are effectively resolved by the program-
mer of the travel application by the designing of an interface to the external

7.4 Advanced Service Composition 355

Fig. 7.16. Static binding: service provided by BankB coded in the travel application

service. This type of static binding is appropriate in environments where the
service landscape is relatively static.

Service-oriented architectures have their strengths in dynamic environ-
ments, where the service landscape is subject to change. In these settings,
static binding of service implementations is not sufficient for taking advan-
tage of a dynamically changing service landscape.

In the literature the dynamic discovery and invocation of services is gen-
erally acknowledged as being an important aspect of any service-oriented ar-
chitecture, as discussed in Section 2.5.1. Dynamic discovery and invocation
can also be described as dynamic binding of service specifications to service
implementations.

In dynamic binding, service implementations can be discovered at run
time. The application (or an advanced service middleware) asks the service
registry for a list of suitable services. Once it receives this list, it selects one
service provider, and binds to its service implementation. To facilitate the
dynamic service matchmaking, a service request needs to be processed by
the service broker. The process of selecting a set of services that fit a service
request is called service matchmaking.

Service matchmaking crucially depends on rich specification of the ser-
vices, and rich expression languages for the service request. In addition, the
business partners need to have a common understanding of the concepts used.
This type of a common and agreed-upon understanding can be realized by a
domain ontology. While there is considerable work in ontology research and
engineering, rich specification languages in general and tool support in par-
ticular have not yet reached maturity.

Dynamic service binding allows applications to cope much better with dy-
namic service landscapes than static binding. Once a new service is available
and registered, it can be used automatically without our changing the applica-
tion (provided the legal contractual agreements between the business partners
are in place).

356 7 Business Process Management Architectures

Fig. 7.17. Dynamic binding: service implementation by BankA is bound dynami-
cally to travel application, due to failure of service implementation by BankB

In the example, dynamic service binding is motivated by a failing credit
card withdrawal service by BankB. In this case, the service registry returns
BankA and BankC as list of available service providers. Assuming BankA
has a better price (or other nonfunctional property), the travel application
dynamically binds the credit card withdrawal service by BankA to the travel
application. As a result, the failure of the BankB service is not visible to the
travel application.

There are variations of this scenario, depending on whether or not the
service registry is aware of the failure of the service by BankB. If the registry
is not aware, then the travel application would try to invoke that service.
After receiving an error message or after a time-out, the travel application
contacts the registry for an alternative service provider.

7.4.2 Ontologies and Data Mappings

Semantic service specifications are required that are based on domain ontolo-
gies. Domain ontologies can be considered to be data models that all process
participants have agreed upon. Ontologies in computer science are character-
ized as data models that represent a set of concepts within a domain and the
relationships between those concepts.

A domain ontology is always associated with a set of stakeholders, who
need to agree on the domain ontology. An ontology has been described in
Gruber (1993) as an explicit specification of a conceptualization.

To illustrate these considerations, Figure 7.18 shows a simple domain on-
tology for contacts. The concepts are represented by ellipses, and the contains
relationships are shown by directed arcs.

The domain ontology shown can be used to integrate services provided
by software systems. In an enterprise application integration scenario, typical
systems to integrate are customer relationship management systems, or CRM
systems, and enterprise resource planning systems, or ERP systems. The data
structures of addresses in these systems are different, as shown in Figure 7.19.

7.4 Advanced Service Composition 357

Fig. 7.18. Domain ontology for contacts

Fig. 7.19. Domain ontology facilitates data mapping, Kuropka et al. (2006)

This figure also shows a mapping of the data structures of the appli-
cation systems to the data structure of the domain ontology. For instance,
the full name data field of the customer relationship management system is
mapped to the Name concept in the domain ontology. Since the street address
is stored in two fields of the enterprise resource planning system data struc-
ture, the field Strasse is mapped to StName, and Hausnummer is mapped to
the Number concept of the ontology.

If the data fields of the application systems are mapped to the domain
ontology, then a mapping of the data can be achieved automatically at run
time.

358 7 Business Process Management Architectures

Assume that there is a service of the customer relationship management
system that returns a parameter of data type Cust 234. This data can be fed
into a service that takes a parameter of data type Adr32 if the appropriate
data mapping is performed.

Fig. 7.20. Domain ontology used for automatic data mapping of CRM customer
data to ERP customer data

If there is a domain ontology in place and the data structures of the sys-
tems are mapped to the domain ontology, then this data mapping can be
performed automatically. This mapping process is shown in Figure 7.20 for a
specific customer, Robert Miller. To indicate the application and direction of
the mapping from the CRM system to the ERP system, the arrows are shown
dotted and directed according to the mapping.

7.4 Advanced Service Composition 359

7.4.3 Preconditions and Postconditions

Mapping of heterogeneous data is important in any enterprise application
middleware. It provides the technical basis for integrating services with each
other, so that the results returned by one service can be used by follow-up
services.

The next level addresses the questions, about under what conditions a
certain activity can be executed, and what the result of an activity execu-
tion is, that is, preconditions and postconditions of activities. Interestingly,
in business process modelling, preconditions and postconditions are already
captured. In event-driven process chains, for instance, preconditions and post-
conditions are represented by events, although in a relatively informal fashion.

For example, if the arrival of an order message triggers an activity to
store the order, then an event order arrived is connected by control flow to
a function store order. The outgoing edge of this function is connected to an
event order is stored. The order arrived event characterizes the precondition
of the function, while the order is stored event it’s postcondition, as shown in
Figure 7.21.

Fig. 7.21. Precondition and postcondition, expressed in event-driven process chain

This type of informally specified precondition and postcondition of a func-
tion in a business process is suitable for fostering the understanding of process
models by human stakeholders. To be usable for composing services realized
by software, the preconditions and postconditions need to be specified in a
more precise way.

7.4.4 Advanced Service Composition by Example

This section introduces advanced service composition by an example. Our ex-
ample is from the call centre domain, where phone calls by customers come in
and call centre agents serve these calls using software systems, in particular, an
enterprise resource planning system and a customer relationship management
system. These systems realize services that make up a service composition
used by the call centre agents.

The scenario is described as follows. In a call centre environment a cus-
tomer calls to request certain information. Using the phone number of the

360 7 Business Process Management Architectures

incoming call, the customer relationship management system gets hold of the
customer address. This address information is—after suitable data mapping
is performed—fed to the enterprise resource planning system that provides
information on the customer calling the call centre agent.

A domain ontology of this scenario is shown in Figure 7.22. This ontology
uses the contacts ontology shown in Figure 7.18 as a building block.

Fig. 7.22. Domain ontology of call centre example

This domain ontology allows us to specify a service having a phone number
as input and an address as output, so that the contact information returned is
not just any contact information, but the contact information for the customer
with the specified phone number.

This information is required for a precise specification of the service; oth-
erwise the relationship between input and output data is imprecise. Another
service might exist that also has a phone number as input and an address as
output, that returns the address of the phone provider for the specified phone
number instead.

Figure 7.23 depicts a visualization of the semantic specifications of the ser-
vices provided by the enterprise resource planning system and of the customer
relationship management system.

Syntactically, service S3 is equivalent to service S1 with regard to input
and output data, but instead of returning a customer’s address it returns the
address of the phone provider supplying the specified phone number. Such a
difference of functionality is not visible in syntactic definitions, but can be
represented and distinguished by semantic specifications.

The overall picture is shown in Figure 7.24, where the matching of the
output parameter of service S1 provided by the CRM system with the service
S2 provided by the ERP system is shown. In this way, these services can
participate in a business process, shown in the upper part of that figure. The
semantic information can be used to decide whether two services actually

7.5 Data-Driven Processes: Case Handling 361

Fig. 7.23. Semantic specification of services

match semantically, so that they can be sequentially executed in the context
of a given business process.

7.5 Data-Driven Processes: Case Handling

Case handling aims at balancing process orientation with data orientation to
control the execution of business processes. The motivation can be derived
from business process reengineering, because one of its main goals is to over-
come the fragmentation of the work in organizations.

The introduction of this fragmentation of work was useful in manufacturing
since the early days of industrialization, where it led to massive increases in
productivity, because highly specialized workers perform isolated pieces of
work with high efficiency. Once the worker has finished a piece of work, the
manufactured artefact is handed over to the next worker in line.

The fragmentation of work has been transferred to the information society.
Workers are expected to conduct a single piece of work in a highly efficient
manner, without a complete picture on the contribution of the work to the

362 7 Business Process Management Architectures

Fig. 7.24. Semantic service composition

company’s goals. To control the combination of the fragmented work, complex
organizational structures have been invented.

With the presence of information technology, the role of workers has
changed. Now the knowledge worker is at the centre, responsible for con-
ducting and organizing her work. The knowledge worker is highly skilled, so
she can conduct a broad range of activities required to fulfill business goals of
the company. An insurance claim, for example, can be processed by a single
person, so that hand-over of work can be avoided. Only in specific, seldom
occurring cases is expert support required.

Case handling takes into account this active role of the knowledge worker
by accepting her expertise and experience to drive and control the case. Since
traditional workflow technology prescribes the activities and their execution
ordering, there is little room for knowledge workers to deviate from the pre-
scribed process. As a result, traditional workflow technology appears too re-
strictive in these settings.

However, there is still support that flexible business process management
systems can provide. Since knowledge-intensive business processes typically
are centred on data processed in the context of a particular case, the handling
of data requires specific attention.

A case is a product that is manufactured, and at any time knowledge work-
ers should be aware of the overall case. Examples of cases are the evaluation
of a job application, the verdict on a traffic violation, the outcome of a tax
assessment, and the ruling for an insurance claim.

7.5 Data-Driven Processes: Case Handling 363

To illustrate the basic ideas of case handling, consider the activities A and
B of a business process that are ordered by control flow A → B. As a result,
B can only be enabled (and therefore can only start) after A has terminated.

This type of ordering constraint is a key ingredient of business process
management in general and workflow management in particular. While in
many business process scenarios this traditional workflow approach is ade-
quate, in knowledge-intensive domains, where an active role of the knowledge
worker drives the process, more flexible approaches are required.

For instance, assume that A does not create its data on termination, but
while it runs. Assume further that B can start working once data values
created by A are available. Then, B can start working on these data, while
A creates the remaining data values. In this case, the control flow constraint
between A and B restricts a useful execution ordering, in which B starts
working before A completes.

One could argue that the level of granularity of the modelled activities
might not be adequate. If the generation of each data value is represented by
a single activity in a business process, then the same process instances can
be achieved. However, since the number of activities would become very high,
complex process models that are hard to understand and maintain would
result.

7.5.1 Case Handling Example

These aspects are illustrated by an example where knowledge workers use
forms to interact with back-end applications. This example is shown in Fig-
ure 7.25. The business process supports the preparation of a quote after re-
ceiving a customer request.

In a traditional human interaction workflow, activities are defined to en-
ter the customer request (Enter Request) and—after the customer request is
entered—prepare the quote (Prepare Quote). These steps are ordered, so that
the preparation of the quote can only be started after the request has been
entered.

We now argue that this rigid definition of execution ordering might not be
suitable for the business process discussed.

Assume that the received customer order is not complete. In particular,
information on the zip code and the fax number are missing, while the data
on the requested product is complete. In the traditional workflow with rigid
control flow structures, the knowledge worker is not allowed to start working
on the preparation of the quote, because the previous activity has not yet
completed.

However, since only data not relevant for preparing the quote is missing,
there is no reason for preventing the knowledge worker to start working on the
quote. Since the preparation of the quote takes more time than registering the
request, the overall execution time of the business process can be reduced if
the knowledge worker starts the preparation of the quote as early as possible.

364 7 Business Process Management Architectures

Fig. 7.25. Motivating example case handling

If, in an alternative setting, the fax number and the zip code is available
but information on the requested item is incomplete, then the preparation of
the quote should not start.

Consequently, a fine-granular definition of dependencies between data is
required. This definition is based on availability of data and data constraints
for activities. Thereby, the process model contains information on which data
objects are mandatory for the next activity to start, and which are optional.
This domain-specific knowledge needs to be provided during the design of case
handling applications.

Since the case is at the centre in case handling, the abstract representations
of cases are known as case models. A case model contains activities, data
objects, and relationships between them, as well as different roles and other
organizational and operational information.

7.5 Data-Driven Processes: Case Handling 365

This discussion shows that the coarse workflow level of abstraction, con-
sisting of the two activities to enter the request and prepare the quote, is too
coarse to allow efficient usage of resources. By looking at fine-grained data
dependencies between activities, much more concurrency between activities is
possible. In Figure 7.25, a third activity is shown that sends the quote to the
customer.

Outside this simplifying example, the knowledge worker might use other
software systems to prepare the quote. The important fact is that the prepara-
tion of the quote does not require address information. Therefore, this activity
can be started as soon as the enter request activity has provided the name
and the request information.

In the example at hand, the link from Enter Request to Prepare Quote
marks the fact that enter request provides data (Name and Request) required
for Prepare Quote to start.

The case continues with the sending of the quote. This activity requires all
data that was generated during the case, including the full address information
and the quotation. There is a control link from Prepare Quote to Send Quote,
because the latter requires the actual quote information.

The execution behaviour of case handling systems is sketched in Fig-
ure 7.27 by an event diagram. The case starts with an Enter Request activity.
As soon as the name and request data fields are provided, Prepare Quote can
start. Send Quote can start when the quote, including the price, is provided.
In the example shown, Prepare Quote terminates before the Enter Request
activity terminates. Due to the data dependencies shown, the quote can only
be sent after the request is entered, that is, after the address information is
available.

This example shows quite well that the set of valid execution behaviours is
much larger in case handling than in traditional workflow management based
solely on control flow constraints.

At the same time, there are formalized execution dependencies available
in case handling systems, as depicted by the dotted arrows in Figure 7.26. By
representing in case models the fine-grained data dependencies associated with
activities conducted by knowledge workers, additional valid executions can be
allowed without violating the overall consistency of the business process.

7.5.2 Case Handling Metamodel

Following our motivating case handling and introducing the basic concepts of
this paradigm by example, the main concepts in case handling are identified
and organized in a case metamodel, which is shown in Figure 7.28.

Case definition is the central class of the metamodel. Case definitions are
either complex (cases with internal structure) or atomic (cases without inter-
nal structure), referred to as complex case definitions and activity definitions,
respectively.

366 7 Business Process Management Architectures

Fig. 7.26. Data dependencies in case handling example

Complex case definitions consist of case definitions, resulting in a hierar-
chical nesting of cases in subcases and activities. Each complex case definition
consists of at least one case definition, and each case definition may occur in
at most one complex case definition.

Since case handling is a data-driven approach, activity definitions are as-
sociated with data object definitions. Each activity definition is associated
with at least one data object definition. This association is partitioned into
two main types, mandatory and restricted.

If a data object is mandatory for an activity, then the respective data value
has to be entered before that activity can be completed. However, it may
also be entered in an earlier activity. A restricted association indicates that
a data value can only be entered during a particular activity. Restricted and
mandatory associations between activities and data are important vehicles for
process enactment in case handling, since, for example, an activity can only
be completed when its mandatory data objects are available.

7.5 Data-Driven Processes: Case Handling 367

Fig. 7.27. Temporal behaviour in case handling example: overall execution time is
reduced, since prepare quote can start before enter request is completed

Fig. 7.28. Case metamodel, simplified version without roles

As seen in the example, activities in case handling systems can be imple-
mented using forms. Forms consist of sets of fields, each of which represents
a data object. Therefore, activity definitions are associated with forms defi-

368 7 Business Process Management Architectures

nitions. The fields displayed in a form associated with an activity correspond
to mandatory as well as restricted data objects for that activity.

The definition of forms may also contain data objects that are mandatory
for subsequent activities. This feature allows flexible enactment of business
processes, since data values can be entered at an early stage, if the knowledge
worker decides to do so.

Data objects may also be free, that is, associated not with particular ac-
tivities but the overall case. Hence, they can be accessed at any time during
the case execution. Free data objects are represented by an association of data
object definition with complex case definition. The context of a case can be
presented by such a form. Providing knowledge with as much information as
possible is an important aspect of case handling systems. Access rights can be
in place in order to limit the access to free data objects to knowledge workers.

Case handling also has an organizational facet. Rather than there being
just a single type of role, as in workflow management, in case handling there
are different types of roles.

• Execute: Roles of type execute are used for executing an activity instance.
• Skip: Persons who can execute an activity are not always allowed to also

skip it. These knowledge workers are determined by the skip role.
• Redo: Activity instances can be redone. Knowledge workers able to redo

a particular activity are determined by the redo role. Redoing activities
allows us to somehow jump back to previous activities with the option of
redoing these activities or reconfirming data values that have been entered
already.

The example shown in Figure 7.29 illustrates the concepts introduced in the
case handling metamodel. It shows how cases, data objects, and forms and
their associations, as well as organizational aspects, play together.

There is one complex case definition C1, which consists of activity defini-
tions A1, A2, and A3, represented by the indirect recursion of complex case
definitions and case definitions in the metamodel, shown as a dotted line con-
necting C1 to its subcases. As shown in that figure, data object definition
D1 is mandatory for A1, A2, and A3. D2 is mandatory for A2, and D3 is
restricted for A3. Since D1 is mandatory for A1, the form definition F1 asso-
ciated with A1 contains a field for D1. However, there is also a field for D2
in that form.

The knowledge worker in charge of a case based on that case definition
may enter a value for D1 when A1 is ready for execution. In addition, she
may also enter a value for D2 at that instant, which implicitly performs A2
as well. This is due to the fact that D2 is the only mandatory data object
for A2. Note, however, that D3 cannot be entered, during A1 or during A2,
since it is restricted to A3, and can therefore only be executed by A3, using
the form associated with it.

The activities of the case are ordered: A1 is followed by A2 and A3, repre-
sented by the recursive association with roles to and from in the metamodel.

7.5 Data-Driven Processes: Case Handling 369

Fig. 7.29. Abstract example to illustrate case handling metamodel, van der Aalst
et al. (2005b)

There are five data object definitions, D0 through D4. Dotted lines marked
with association type names represent the associations between activity defi-
nitions and data object definitions. D0 and D4 are free data elements, which
appear in form definition F3, associated with the overall case definition C1.

Notice that form definition F1 contains not only a field d1 representing
data object D1 (mandatory for the completion of A1), but also d2 (for data
object D2, which is mandatory for A2) and d0 (for free data object D0).
During the execution of A1, the knowledge worker may already enter a data
value for d2, although this is not required for the completion of A1. However,
A1 cannot complete before d1 is entered, because D1 is mandatory for A1.

The knowledge worker may use the information presented in d0 to work
efficiently on the case. So as not to overload the figure, the roles are not spec-
ified completely. In fact, only the roles for A1 are specified: R1 and R2 are
associated with A1, where the association with R1 is of type execute (knowl-
edge workers with role R1 may execute this activity), while the association
with R2 is of type skip, so that persons with role R2 may skip this activity. To
summarize, during the enactment of cases based on case definition C1, only
knowledge workers who can play role R1 are permitted to perform activities
based on A1, and only persons with role R2 may skip that activity.

In the context of this book, not all details of case handling systems can
be discussed. For instance, case handling also allows the definition of process
structures. We have concentrated on the differences between case handling
and process orchestrations and did not elaborate on this particular capability
of case handling. For further details, the interested reader is referred to the
references in the bibliographical notes.

370 7 Business Process Management Architectures

Bibliographical Notes

The reference architecture of workflow management systems was introduced
by the Workflow Management Coalition in Hollingsworth (1995); Workflow
Management Coalition (2005) introduces the XML Process Definition Lan-
guage.

Flexible workflow management is addressed in Reichert and Dadam (1998)
in the context of the ADEPT project; Bauer et al. (2003) discusses load bal-
ancing issues in this project. Flexible workflow management in the context of
the WASA project is reported in Medeiros et al. (1995). Weske (1998) and
Weske (2000) introduce the WASA approach in detail that is also reported in
this chapter.

An overview on flexible workflow management is given by Rinderle et al.
(2003). Dynamic changes to process types and process instances are investi-
gated in Rinderle et al. (2004). Ly et al. (2006) discusses semantic aspects
in process execution control, focusing on execution semantics rather than
application semantics. Investigations regarding change patterns in business
processes and features in process-aware information systems are reported in
Weber et al. (2007). Reichert et al. (2009) provide an overview of flexibility
in process-aware information systems.

The concepts that constitute a service-oriented architecture were intro-
duced in Burbeck (2000). Web services standards are put forward as recom-
mendations by the World Wide Web Consortium. The SOAP recommenda-
tion is published as Gudgin et al. (2007), while the Web Services Description
Language is available as Chinnici et al. (2007). The Universal Description,
Discovery, and Integration is published in Clement et al. (2004).

Web services concepts, architectures, and applications are addressed in
Alonso et al. (2009), starting from conventional middleware, including enter-
prise application integration middleware. Newcomer and Lomow (2005) look
at practical aspects of service-oriented architectures. The relationship of work-
flow management and service-oriented architectures is addressed in Leymann
et al. (2002).

The Web Services Business Process Execution Language, developed under
the guidance of the Organization for the Advancement of Structured Infor-
mation Standards, is available in Oasis (2007).

Semantic service specifications and their use in service matchmaking, ser-
vice composition, and flexible service enactment were addressed in the Adap-
tive Services Grid project, supported by the European Commission in the
Sixth Framework Programme. The conceptual design of a service provision-
ing platform is introduced in Kuropka et al. (2006). The automated composi-
tion of services using a heuristic search algorithm is addressed in Meyer and
Weske (2006). The adaptation of interfaces for composed services is addressed
in Dumas et al. (2006).

In the context of semantic Web services, there are two major efforts. The
Web Service Modeling Ontology has its centre of gravity in Europe, while the

7.5 Data-Driven Processes: Case Handling 371

Web Ontology Language is mainly an American effort. In de Bruijn (2005),
the Web Service Modelling Language is introduced as core part of the Web
Service Modeling Ontology. An overview on the Ontology Web Language is
given in McGuinness (2004). Semantics concepts are also used in Nagarajan
et al. (2006) to foster the interoperability of Web services. Verma et al. (2006)
introduces an approach to adapt Web processes to external events while pre-
serving constraints that are required for the coordination of the services.

Case handling is introduced in van der Aalst et al. (2005b) from conceptual
and technical points of view. The application of case handling is addressed in
Reijers et al. (2003). Case handling is realized in the FLOWer business process
management system, as reported in van der Aalst and Berens (2001). Recently,
the term adaptive case management was coined, which includes concepts from
case handling and flexible workflow management. Swenson (2010) presents
several approaches related to adaptive case management.

8

Business Process Management Methodology

So far, this book has introduced concepts, languages and architectures to de-
velop and analyze process oriented information systems. This section broad-
ens the scope by investigating how process management projects can be con-
ducted, that is, we look at business process management methodologies.

Since every company is different and each process management project
has to cope with different assumptions, goals, requirements, and people, the
methodology shown is not meant as a blue print for all types of projects in
this area. Instead, the main goal of this chapter is to generate awareness for
the typical issues that people encounter in real-world process management
projects. The chapter also provides hints on how these issues could be ad-
dressed.

8.1 Dependencies between Processes

As sketched in Section 2.3 in the context of process landscapes, the goal of a
business process is to produce results, that is, outcomes that are of value to
its customers. Results are the vehicle for the value created by a process. In
order to develop these results, each process needs input from other processes.
Hence, each business process has supplier processes and customer processes.
Each process provides results to its customer processes. At the same time, it
acts as a customer to its supplier processes.

Supplier-customer relationships can also cross organizational boundaries.
This observation is in line with the structure of value systems, in which each
company is represented by a value chain, and the value chains of business
partners are organized as a value system, representing their relationships. A
manufacturing company, for instance, orders raw material from its suppliers,
adds value by manufacturing goods, and sells these goods to its customers.

This concept is visualized in Figure 8.1, which looks at cross organizational
supplier-customer relationships. Company A has one external supplier and one

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2 8,
© Springer-Verlag Berlin Heidelberg 2012

373

http://dx.doi.org/10.1007/978-3-642-28616-2_8

374 8 Business Process Management Methodology

Fig. 8.1. Supplier-customer relationships between companies

external customer. It receives input (results developed by its external supplier)
and produces output (results provided to its external customer).

This figure also shows requirements that define properties of the results.
Starting from right to left, the external customer imposes customer require-
ments on the results delivered by Company A. By these requirements, the ex-
ternal customer also indirectly imposes requirements on that company, since
its processes need to be designed in a way that the results satisfy the require-
ments. In Figure 8.1, these indirect requirements are shown as dashed lines,
while the direct requirements on the results are shown as solid lines.

This approach is illustrated by an example involving a company that man-
ufactures bikes. The company has several suppliers that provide the material
required for bike production. The material is the “result” provided by the ex-
ternal supplier to the bike manufacturer. The customer orders well-specified
bikes, imposing requirements on the results that the bike manufacturer deliv-
ers.

These relationships between companies are typically determined by con-
tracts. An order is an example of such a contract. The external customer
issues an order, that defines all details of the ordered bikes. Also, the price
and further information, such as the date of delivery is determined in the
contract.

After discussing supplier-customer relationships between companies, inter-
nal processes of companies are investigated, shown in Figure 8.2. Each process
that a company performs has internal or external customers. The term inter-
nal refers to customers that are part of the same organization as the supplier
process. An internal supplier is a process that resides in the same organization
as the customer. If the delivered result crosses organizational boundaries, the
terms external customer and external supplier are used.

8.1 Dependencies between Processes 375

Fig. 8.2. Supplier-customer relationships between processes, based on Füermann
and Dammasch (2008)

On the left-hand side of that figure, a supplier of the bike manufacturer
can be found; in the centre, three internal processes are shown. On the right
hand side a bike shop can play the role of external customer.

To illustrate these concepts, the bike manufacturing example is revisited.
In that company, the incoming logistics process is responsible for collecting the
input material, for storing it in a warehouse, and for updating an inventory
database. It serves as supplier for the production process, which needs the
material to build bikes. Once the bikes are manufactured, the sales process
takes over. Therefore, the production process is the internal supplier for the
sales process, which ships the bikes to its external customer, for instance, a
bike shop.

This description goes very well with the diagram shown in Figure 8.2. How-
ever, that figure exposes a simplification, since no process has more than one
supplier or customer. Real-world processes typically have multiple suppliers
and multiple customers as well as multiple input and output results.

The material provided by an external supplier needs to obey the require-
ments as defined by the contract. This property also holds for internal pro-
cesses. Well specified interfaces are also important between internal processes,
since internal customer processes will only be satisfied if the results delivered
match their requirements. Many companies use internal documents to state
the requirements regarding the results exchanged between their internal pro-
cesses. However, often these internal requirements are defined in a less precise
way than contracts with external business partners.

Once the requirements are set, it is important to be able to decide whether
a result actually satisfies the requirements defined. Therefore, properties of
results need to be measurable with respect to their requirements.

Returning to the bike manufacturing example, a contract contains exact
specifications of the bicycle frames a company orders from its suppliers. The

376 8 Business Process Management Methodology

customer has exact requirements for the products ordered. Once the bike com-
pany receives a set of frames from a supplier, it checks whether the delivered
frames fulfill the specifications as specified in the order. If this is not the case,
the frames are sent back to the supplier, which results in additional effort of
process execution, both on the supplier and on the customer side.

While manufacturing processes are well suited to illustrate this approach,
it is not limited to processes that exchange physical goods. It can also be
applied for information processes, such as the processing of an insurance claim.
A claim handling process requires a claim document as input. This input is
used, along with other input data, such as the contract with the client, to
decide about covering the damage. The result of this process is the decision
on how to handle the claim, passed back to the client.

8.2 Methodology Overview

Rather than presenting a formal method for describing development processes,
we use an informal notation, in which phases are represented by boxes and
dependencies between phases by arcs. The methodology is shown in Figure 8.3.

The methodology starts with the Strategy and Organization phase, in
which the organizational prerequisites for the project are established. A key
activity in this phase is the setting up of a steering committee consisting of
high level company officials. The most important processes are identified, and
for each process, a process owner is selected, who chairs a process team that
is responsible for the development of the process.

The Process Landscape Design phase takes a closer look at the supplier-
customer relationships between the key processes. The respective process
teams cooperate to identify the complete set of dependencies between the
processes based on the results exchanged. The outcome of this phase is a pro-
cess landscape, consisting of the main processes and their supplier-consumer
relationships.

From the third phase on, the phases are conducted for each business pro-
cess individually. However, the process teams still interact with each other
to identify dependencies, find deficiencies, and to be able to improve their
processes.

The Process Design phase starts by taking an in-depth look at the re-
sults produced during process execution. Results are analyzed with respect
to their importance for customers and the resources required for producing
them. Business processes are modeled, concentrating on activities that are
required for achieving the results. The measuring of process performance is
also addressed in this phase by providing a set of metrics and performance
indicators that are used to measure processes in later phases.

Most business processes are performed by people and supported by in-
formation systems. Therefore, the Process Implementation phase looks at

8.2 Methodology Overview 377

Fig. 8.3. Business process methodology

technical aspects, while also sketching organizational aspects of process im-
plementations. An important aspect of this phase is the implementation of
measurements that were defined during the previous phase.

The daily business of the organization is conducted during the Opera-
tions and Controlling phase by executing business processes. Measurements
are performed and the process performance is reviewed by the process team.
Whenever there are issues with the performance—such as violation of the in-
tended performance or negative trends that could lead to problems later—the
process team investigates the situation and proposes changes to the process.
The actual changes to the process are conducted in the design phase, which
is re-entered in this case.

378 8 Business Process Management Methodology

8.3 Phases in Detail

After providing an overview of the methodology, this section discusses the
individual phases in more detail.

8.3.1 Strategy and Organization

Strategy development aims at improving the long-term competitiveness of or-
ganizations in a way that is sustainable. The early identification of changing
markets and the evaluation of the organization’s strengths and weaknesses are
important activities in strategic management. Core competencies are identi-
fied and strengthened. The major results of strategic management are long-
term strategies and ways to achieve sustainable competitive advantage. Busi-
ness process management can provide a link between the strategic goals of a
company and the actual work being done.

Once the long-term strategies are set up, process management projects can
be established to implement them. Any business process management effort
requires the support of influential persons in the organization. Due to the out-
reach of new solutions based on process technology, awareness building and
training involving process stakeholders are instrumental. The establishment of
dedicated roles in the executive management is also important, most promi-
nently the role of Chief Process Officer (CPO), as discussed in Section 1.2.

The CPO installs a steering committee that overlooks all process related
projects and provides the resources for conducting them. The steering com-
mittee involves further members of the top level management. It has been
shown that top level management support is one of the key success factors for
process management projects.

Once it is set up, the steering committee identifies the most important
organizational business processes. These processes have direct impact on the
company’s customers. They can be identified by collecting and evaluating
internal and external contracts and by analyzing information systems that
external partners access.

For each identified key process, a process owner is selected. It is typically
the chair of the department that covers the majority of activities in the pro-
cess. He or she puts together a process team, consisting of persons that are
personally involved in and knowledgeable about the process. In later phases,
the project team analyzes and improves the process. It makes sure that the
process fulfills the requirements imposed by its customers, both internal and
external.

8.3.2 Process Landscape Design

Once the key processes are identified and the process teams are established,
the dependencies between the processes are investigated. Each process team
looks at the most important results provided by its process and the customers

8.3 Phases in Detail 379

for whom the results are produced. To develop a process landscape, the focus
in this phase is on identifying the main dependencies between processes, while
the next phase looks into the operational aspects of business processes.

In the process landscape design phase, internal and external contracts
are analyzed that have been identified in the first phase. The partners of
the contracts are candidate processes which have a supplier relationship or
a customer relationship with the process under investigation. Dependencies
between processes are identified and consolidated in a process landscape.

Fig. 8.4. Input and output results of Product Development Process

To illustrate this concept, a product development process is considered.
The process team has analyzed the internal and external contracts as well
as additional documentation about the process and information systems that
the process uses. This analysis has shown that the process receives prototypes
as well as product specifications from customer processes. Its main results
are the products the company sells to its customers. These input and output
results are shown in Figure 8.4.

Fig. 8.5. Input and output results of other processes that are related to Product
Development Process

At this stage, it is essential to communicate with other process teams.
Figure 8.5 shows the input and output of other key processes. In this exam-
ple, matching the inputs and outputs of the processes immediately shows the
dependencies between these processes.

In general, the dependencies between processes are not as obvious as they
are in this example. Different terms might be used by the process teams to
define a given result. In these cases, the process teams need to discuss the
core of what is exchanged between their processes. The goal of this discussion
process is consolidating the results exchanged and, finally, designing a process
landscape.

380 8 Business Process Management Methodology

Fig. 8.6. Process landscape showing supplier-customer relationships between busi-
ness processes

The resulting process landscape is shown in Figure 8.6, which is a variant
of the process landscape discussed in Section 2.3.2. It contains the processes
discussed above as well as their supplier-consumer relationships.

8.3.3 Process Design

Once the project landscape is set up, the process team investigates the opera-
tional processes that contribute to its organizational process. Typically, there
are several operational business processes that realize one organizational busi-
ness process. Supplier-customer relationships like the ones described earlier in
this chapter do not only apply to organizational processes, but also operational
processes on a more detailed level of abstraction. The approach presented can
therefore be applied to both the organizational business processes as well as
to the operational business processes that realize them.

The key goal of the process design phase is improving the interfaces be-
tween the processes, because streamlining them can improve the performance
of an organization significantly. If the results provided do not match the re-
quirements, exceptions occur, processes need to be repeated, so that time and
effort is wasted. On the other hand, time and effort are also wasted, if the
quality of result is higher than required. For instance, providing a ten page
report is a waste of effort, if the customer desires a two page report only.

Process Modeling

To start the modeling of the business process, its results are documented and
associated with customers. Then a consistency check is performed to find out
whether all results actually have at least one customer and whether there is
at least one result delivered to each customer.

This consistency check might lead to interesting results. If the process pro-
duces a result for which no customer can be identified, the result is obviously

8.3 Phases in Detail 381

not required. Future versions of the process do not need to produce this result,
which reduces the effort of process execution.

Once all results of the process are described and associated with customers,
the process team identifies and describes the activities that produce them. If
BPMN is used to represent operational business processes, results can be rep-
resented by data objects. By associating data objects with process activities,
we can define which activities are responsible for creating which results. In
BPMN, data objects can be marked as data output, which indicates that the
results represented by the data object are used after the process has termi-
nated.

In a next step, the process inputs are investigated in more detail. Therefore,
the process suppliers are contacted and the results provided by them are
analyzed. In case of an internal supplier, contacting the team does not incur
problems. In case of an external supplier, the steering committee has to be
involved. The goal of this contacting other process teams is to improve the
interfaces between the processes. This discussion between project teams will
create a shared understanding of what the results are actually used for, which
leads to a more precise characterization of the input and output between
processes.

The gathered information is represented in the business process model as
data input, which is associated with process activities. Also in this phase,
consistency checks can be performed. For instance, we can analyze whether
all input data is actually used by the process. If not all input data is used,
the respective supplier process needs to be informed.

The business process needs to be refined accordingly. For instance, activ-
ities responsible for the creation of data output that is not required can be
dropped. This step results in a consolidated process model that only contains
data objects that are actually needed, both with respect to input data and
output data.

Process Improvement and Measurement Definition

In this phase, the process model is enhanced by activities that are also required
by the process. Often, a result is not delivered in one step, but several activ-
ities are required that, for instance, produce intermediate results or perform
additional checks. The business process model is enriched by these activities.

Since process improvement is about effort, the resources required to pro-
duce its results also have to be taken into account. Therefore, the next step
involves the estimation of resources required to perform process activities.
This effort can then be associated with results, so that for each result deliv-
ered the effort to obtain it is determined.

Options for process improvement are investigated next. For each such op-
tion, the effect on the overall cost of the process can be estimated. For instance,
dropping activities that are no longer required reduces the effort of the pro-

382 8 Business Process Management Methodology

cess, while adding activities or enhancing the work done in an activity—for
instance, to provide results of higher quality—adds to the effort.

At this point, the value of process activities is analyzed. Activities that do
not contribute to the value creation, that is, to the development of the process
results, are candidates for being dropped.

There are further approaches to improve the performance of business pro-
cesses. The most important one has already been discussed, that is, producing
results in exactly the quality that is required by the process customers. This
goes along with identification and elimination of over production. For instance,
results might be produced for which persons think that they might eventually
be useful. However, if results are not required then the process should not
produce them in the first place.

Many business processes contain approvement steps that were introduced
a long time ago and never reviewed. Not all of them might be required and
some of them could be performed by information systems. These steps add to
the execution time of the process, because they typically require hand-overs
between persons. For instance, a document is prepared by a clerk and given
to a manager for approval. If the manager is currently busy, he or she might
sign the document only later, delaying the process.

In general, the hand-over of work needs to be investigated carefully and
dropped whenever possible. This was already discussed in the context of re-
source allocation patterns, where the case handling pattern was introduced to
assign related process activities to one person only.

After applying these process improvement steps, the process model is up-
dated accordingly and reviewed, resolving any ambiguities that might have
emerged.

The process design phase also involves the definition of measures. Each
process should be measured with one or two metrics that characterize the es-
sentials of its performance. Such a metric is called Key Performance Indicator
or KPI. For each KPI, the following aspects need to be defined.

• Business goal that the key performance indicator contributes to
• Name and data type
• Algorithm that exactly defines how to measure the KPI
• Target value of the key performance indicator
• Upper and lower target margins that define a corridor of the intended

performance

Consider a sample key performance indicator named QuoteIssueTime, which
contributes to a goal ExcellentCustomerService by defining a service level
regarding the preparation of quotes.

This performance indicator states that 90% of all quote requests should
be processed within two working days, which is the target value. The KPI
allows an upper target margin of 4% and a lower target margin of 6%. This
means that the KPI is still satisfied, if 93.6% (90% plus 4% of 90%) of the
quote processes are completed within two working days. Since the KPI has

8.3 Phases in Detail 383

the lower target margin of 6%, it is still satisfied if only 84.6% (90% minus
6%) of the service processes are completed within two working days.

The interval from 93.6% to 84.6% defines the corridor of intended per-
formance of the service process. If the performance of the process leaves this
corridor or if a trend emerges that indicates leaving the corridor soon, the pro-
cess team investigates the reasons for this change in performance and either
updates the process or reviews the resources allocated to the process.

8.3.4 Process Implementation

After the operational business process models have been developed, the im-
plementation phase investigates how these processes can be realized.

Each process implementation has organizational aspects as well as techni-
cal aspects. Organizational aspects concern persons, their roles and respon-
sibilities. Technical aspects include the use of systems in the process. In our
area, information systems play the most prominent role, but it might also be
systems that deal with physical objects, such as production systems.

Implementing a process in an organization is a broad topic, which cannot
be covered completely in a text book. It involves setting up the organizational
structures that are in line with the process. The persons involved need to
be trained to be able to play their role in the process effectively. Working
guidelines are used as an instrument to communicate processes. Depending
on the scenario, these guidelines might also contain just the goal of an activity
rather than a detailed recipe on how to reach it. Knowledge workers know very
well how to solve problems during process execution, as they emerge.

Platform Selection

Since this book concentrates on concepts and architectures of process oriented
information systems, technical aspects are discussed in more detail. In this
context, a platform suitable to run the business process has to be selected.

If the organization plans to base its information systems on a service-
oriented architecture, the business process can be realized using service com-
position techniques. If human interaction is required and the process is well
structured, then an appropriate platform is a workflow management system.
In case the process structure is rather flexible and data plays a key role dur-
ing process enactment, a case handling system should be selected. The process
might also be implemented without a dedicated process oriented information
system, in which case the process is used as requirements document in the
respective software development process.

In real-world projects, the selection of an enactment platform is often done
at an early project stage, either by an extensive selection process or by using
existing relationships with specific vendors. The early selection of a system,
however, is one of the main problems in process implementation, since at this
point in time there is little information available on the business processes

384 8 Business Process Management Methodology

and their execution environment. Consequently, it is not possible to choose a
workflow management system according to the specific needs of the business
processes under consideration.

Therefore, the methodology proposes not to select the enactment platform
up front, but after the business process and the technical environment of its
execution have been established. The selection process starts with the defin-
ing of selection criteria based on the identified business processes. Obviously,
there are many criteria for selecting a suitable workflow management system,
ranging from integration criteria to the interface design of the systems.

Based on the identified selection criteria and on market analysis data, an
initial set of workflow management systems can be selected. However, if the
systems available do not meet the criteria—or the systems cannot be used in
the particular technological infrastructure—then the selection criteria have to
be redesigned. If a system is found that satisfies the criteria, it is installed
and tested against the criteria. If the tests are successful, a review meeting is
organized in which the final decision on the system to be used is made.

Implementation Aspects

The activities in the operational business process are mapped to activities
at the workflow level. There are complex relationships possible between the
operational level of a business process and its implementation. In some cases,
an activity in the operational level can be mapped to a subprocess in the
implementation level, resulting in a hierarchical decomposition. However, in
the general case, relationships between processes might be more complex, as
recently formalized as complex correspondencies between activities of related
business processes.

In addition to the process aspect, the organizational environment needs
to be represented if human interaction workflows are used to realize the op-
erational business process. Depending on the functionality provided by the
enactment platform, either the organizational information is entered in the
system or an interface to an existing system that manages organizational in-
formation is established.

An important activity in this phase is concerned with the integration of
external applications. Depending on the support provided by the selected
workflow system and enterprise application integration platform, application
integration may require considerable coding and extensive testing.

Measurement Implementation

The implementation phase does not only concern the realization of the actual
business process, but also of the key performance indicators defined for it. This
can be achieved by implementing measurement points that provide execution
information while the process runs and by aggregating this information as
defined in the performance indicator.

8.3 Phases in Detail 385

To illustrate this approach, the key performance indicator IssueQuoteTime
is revisited. The Issue Quote process, responsible for issuing quotes is shown in
Figure 8.7. It starts by receiving a request message from a customer, followed
by an activity to prepare the quote. Once the quote is prepared, it can be
approved. The process ends by sending the quote to the customer.

Fig. 8.7. Process diagram containing measurement points for key performance in-
dicator IssueQuoteTime

For this process, measurement points can be implemented by creating a log
entry each time a request-for-quote message is received (Measurement Point
1 in Figure 8.7). This log entry contains information about the request, most
prominently an identifier, and a time stamp taken when the message arrived.

Another log entry is written when the quote is sent (Measurement Point
2). This entry contains the identifier and a time stamp, taken when the quote
was sent. The identifier allows to correlate log entries that belong to the same
process instance. The measurement points are represented in Figure 8.7 by
annotations of the respective events.

Test and Deployment

Testing comprises the two subphases lab simulation and field testing. The
overall goal of the testing subphase is to obtain information about the tech-
nical stability, performance, and the usability of the solution in the target
environment. A field test is performed to show that the workflow application
is able to handle real-world situations, characterized by problems which (at
least partially) cannot be planned or predicted beforehand in laboratory en-
vironments. Therefore, the application is tested against real-world conditions.
After defining the goals of the field test, the business processes to be tested
are selected.

For each such process, a backup solution must be provided to cope with
potential error situations in the application. In case of human interaction
workflows, the employees involved in the tested processes are trained on the

386 8 Business Process Management Methodology

new business process application. If the training is completed and the backup
solution is tested extensively and is considered stable, the field test can be
performed. After its completion, the test data generated is analyzed. Depend-
ing on the analysis, the project team may decide to create new test goals.
This process can iterate, so that the field tests become increasingly accurate.

Once the process and the measuring points required for computing its KPI
are implemented and tested, the process needs to be deployed and the related
technical and organizational changes have to be performed. These activities
include communication of the improved process in the organization. It also
involves user training on new or modified information systems that support the
process. In addition to these organizational aspects, application data might
need to be migrated to new systems. If the training and the data migration
are finished successfully, the new process can go live.

8.3.5 Operations and Controlling

In the operations and controlling phase, the daily business of the organization
is conducted.

In this phase, it is essential that the process is performed as designed.
Any bypassing of the process by employees needs to be identified. Once a
bypass has been identified, the reasons for bypassing the process need to be
carefully investigated. In many cases, there is a valid reason for not executing
the process as planned. A typical reason is a new software system that has no
intuitive user interface or the employees that are expected to work with the
system have not been trained properly.

Identifying such a bypass puts a work item on the agenda of the process
team. Typically, either there is a problem with the usability of the software,
as discussed above. Or the process structure is not adequate to conduct the
business process. Whenever a structural issue is discovered, the process team
re-enters the design phase and looks for ways of improving the process so that
its structural problems vanish. Any further problems that emerge are also
reported to the process team that takes care of them. Since the members of
the process team are themselves heavily involved in the process, they will be
able to spot any issue that might arise in the process.

Controlling is an important aspect of this phase, that is, measuring of
the performance indicators. Following up on the example, the measurement
points are used to compute the key performance indicator IssueQuoteTime as
follows. Pairs of events that belong to the same process instance are identified,
and the time stamp of the receive event is subtracted from the time stamp of
the send event, resulting in the time span between receiving the request and
sending the quote.

If the reporting period is, for instance, twice a month, this information is
gathered, before computing the performance indicator two times a month. As
long as the measured KPI is within the range 84.6% through 93.6%, things are
fine and we can report this information to the management. However, once

8.3 Phases in Detail 387

the lower threshold value or the upper threshold value is reached, a signal will
be shown to the process owner to indicate the need for action on this process.

Fig. 8.8. Process performance diagram showing the percentage P of process in-
stances that have completed within the desired time

Using diagrams like the one shown in Figure 8.8, the process owner gets a
visual impression of the process performance over time; he or she can detect
trends in the performance of the process as they develop.

In this diagram, the performance values are shown as black dots for one
year. The calculation was done two times a month. For instance, a black
dot at the coordinates (9, 90%) means that during the reporting period in
September, 90% of all quotes have been sent within two working days.

In January, the KPI was not met. By the appropriate measures taken by
the process team, the performance improved to reach about 90% in March.
Then the performance deteriorated, so that the lower threshold value was
missed in May. This fact was detected by the performance team, and appro-
priate measures were taken to improve the process. Performance rose again,
and even left the KPI corridor in August, so that measures were taken to save
effort, which is not required to reach the KPI. Finally the system is in a stable
state, indicated by the sequence of measures in the target zone of the KPI.

This discussion shows how the measured values can be used to constantly
monitor the performance of the process. Whenever the KPI corridor is left or
a trend is detected that could lead to this situation in the near future, the
process team investigates the reasons for this situation. Once the reasons are
found, the process team re-enters the process design phase. If the problem can
be solved by changing the resources allocated to the process, the respective
measures are taken. The modifications are implemented and deployed, so that
the business process again meets its key performance indicator.

Bibliographical Notes

Workflow application development processes have been discussed in Weske
et al. (2001). The material presented in Chapter 8 extends the work presented

388 8 Business Process Management Methodology

therein and combines it with a methodology focusing on supplier-customer re-
lationships of processes, developed in Füermann and Dammasch (2008). Pulier
and Taylor (2006) investigate development methodologies for enterprise appli-
cation integration scenarios in service-oriented architectures from a practical
point of view, using a fictious enterprise. Complex correspondencies between
business processes on different levels of abstraction are investigated with re-
spect to their behaviour in Weidlich (2011). Critical success factors of process
oriented information systems are investigated in Mutschler et al. (2008). Pro-
cess improvement has been addressed in Mansar and Reijers (2005) and Reijers
(2005), where best practices of process improvement based on heuristic rules
were identified.

In the context of the Integrated Definition Methods (IDEF) approach,
an IDEF3 process description capture method is proposed in Meyer et al.
(1995). This method comes with dedicated organizational regulations, forms
to describe processes and activities, and a process description language.

References

van der Aalst W (1998) The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1):21–66

van der Aalst W (1999) Woflan: A Petri-net-based Workflow Analyzer. Systems
Analysis – Modelling – Simulation 35(3):345–357

van der Aalst W, Basten T (2002) Inheritance of Workflows: An Approach to Tack-
ling Problems Related to Change. Theor Comput Sci 270(1–2):125–203

van der Aalst W, Berens P (2001) Beyond Workflow Management: Product-driven
Case Handling. In: Ellis S, Rodden T, Zigurs I (eds) International ACM SIG-
GROUP Conference on Supporting Group Work (GROUP 2001), pp 42–51

van der Aalst W, van Hee K (2004) Workflow Management: Models, Methods, and
Systems. Cooperative Information Systems Series, MIT Press

van der Aalst W, ter Hofstede A (2005) YAWL: Yet Another Workflow Language.
Information Systems 30(4):245–275

van der Aalst W, Weske M (2001) The P2P Approach to Interorganizational Work-
flows. In: Dittrich KR, Geppert A, Norrie MC (eds) Proceedings of the 13th
Conference on Advanced Information Systems Engineering (CAiSE’01), Springer
Lecture Notes in Computer Science 2068, pp 140–156

van der Aalst W, Hofstede A, Weske M (2003a) Business Process Management:
A Survey. In: Aalst W, Hofstede A, Weske M (eds) International Conference
on Business Process Management (BPM 2003), Springer-Verlag, Berlin, Lecture
Notes in Computer Science, vol 2678, pp 1–12

van der Aalst W, ter Hofstede A, Weske M (eds) (2003b) Proceedings of the In-
ternational Conference on Business Process Management, no. 2678 in Lecture
Notes in Computer Science, Springer, Heidelberg

van der Aalst W, ter Hofstede AHM, Kiepuszewski B, Barros AP (2003c) Workflow
Patterns. Distributed and Parallel Databases 14(1):5–51

van der Aalst W, Aldred L, Dumas M, ter Hofstede A (2004) Design and Implemen-
tation of the YAWL System. In: Proceedings of The 16th International Con-
ference on Advanced Information Systems Engineering (CAiSE 04), Springer-
Verlag, Lecture Notes in Computer Science, vol 3084, pp 142–159

van der Aalst W, Benatallah B, Casati F, Curbera F (eds) (2005a) Proceedings of
the Third International Conference on Business Process Management, no. 3649
in Lecture Notes in Computer Science, Springer, Heidelberg

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2,
© Springer-Verlag Berlin Heidelberg 2012

389

http://dx.doi.org/10.1007/978-3-642-28616-2

390 References

van der Aalst W, Weske M, Grünbauer D (2005b) Case Handling: A New Paradigm
for Business Process Support. Data and Knowledge Engineering 53:129–162

van der Aalst W, de Medeiros AKA, Weijters AJMM (2006) Process Equivalence:
Comparing Two Process Models Based on Observed Behavior. In: Business Pro-
cess Management, Springer, Lecture Notes in Computer Science, vol 4102, pp
129–144

van der Aalst W, Reijers H, Weijters A, van Dongen B, de Medeiros AA, Song M,
Verbeek H (2007) Business Process Mining: An Industrial Application. Informa-
tion Systems

van der Aalst WMP (2000) Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques. In: van der Aalst et al. (2000), pp 161–183

van der Aalst WMP (2011) Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer

van der Aalst WMP, Stahl C (eds) (2011) Modeling Business Processes – A Petri
Net-Oriented Approach. MIT Press

van der Aalst WMP, Desel J, Oberweis A (eds) (2000) Business Process Manage-
ment, Models, Techniques, and Empirical Studies, Lecture Notes in Computer
Science, vol 1806, Springer

Alonso G, Dadam P, Rosemann M (eds) (2007) Business Process Management,
5th International Conference, BPM 2007, Brisbane, Australia, September 24–
28, 2007, Proceedings, Lecture Notes in Computer Science, vol 4714, Springer

Alonso G, Casati F, Kuno H, Machiraju V (2009) Web Services: Concepts, Architec-
tures and Applications. Data-Centric Systems and Applications Series, Springer

Barros AP, Dumas M, ter Hofstede AHM (2005) Service Interaction Patterns. In:
van der Aalst W, Benatallah B, Casati F, Curbera F (eds) Business Process Man-
agement, Springer, Heidelberg, Lecture Notes in Computer Science, vol 3649, pp
302–318

Basten T, van der Aalst W (2001) Inheritance of Behavior. JLAP 47(2):47–145
Bauer T, Reichert M, Dadam P (2003) Intra-Subnet Load Balancing in Distributed

Workflow Management Systems. International Journal of Cooperative Informa-
tion Systems 12(3):295–324

Becker J, Kugeler M, Rosemann M (2011) Process Management. A Guide for the
Design of Business Processes, 2nd edn. Springer

Boehm BW (1981) Software Engineering Economics. Pearson Education
Booch G, Jacobson I, Rumbaugh J (2005) The Unified Modeling Language User

Guide, 2nd edn. Addison-Wesley
BPM Offensive Berlin (2011) BPMN 2.0 Business Process Model and Notation,

Poster. http://www.bpmb.de/index.php/BPMNPoster
Bravetti M, Núñez M, Zavattaro G (eds) (2006) Web Services and Formal Methods,

Third International Workshop, WS-FM 2006 Vienna, Austria, September 8–9,
2006, Proceedings, Lecture Notes in Computer Science, vol 4184, Springer

de Bruijn J (2005) The Web Service Modeling Language WSML. Available at
http://www.wsmo.org/TR/d16/d16.1/v0.21/. Tech. rep., University of Inns-
bruck

Burbeck S (2000) The Tao of E-Business Services – The Evolution of Web Appli-
cations into Service-Oriented Components with Web Services. Tech. rep., IBM
Software Group

Chappell DA (2004) Enterprise Service Bus. Theory in Practice, O’Reilly

http://www.bpmb.de/index.php/BPMNPoster
http://www.wsmo.org/TR

References 391

Chen PP (1976) The Entity-Relationship Model – Toward a Unified View of Data.
ACM Trans Database Syst 1(1):9–36

Chinnici R, Moreau JJ, Ryman A, Weerawarana S (2007) Web Services Description
Language (WSDL) Version 2.0. W3C

Clement L, Hately A, von Riegen C, Rogers T (2004) UDDI Version 3.0.2. OASIS
Cuntz N, Kindler E (2005) On the Semantics of EPCs: Efficient Calculation and Sim-

ulation. In: van der Aalst W, Benatallah B, Casati F, Curbera F (eds) Business
Process Management, Springer, Heidelberg, Lecture Notes in Computer Science,
vol 3649, pp 398–403

Davenport TH (1992) Process Innovation – Reengineering Work through Informa-
tion Technology. Havard Business School Press

Dayal U, Eder J, Koehler J, Reijers HA (eds) (2009) Business Process Management,
7th International Conference, BPM 2009, Ulm, Germany, September 8–10, 2009.
Proceedings, Lecture Notes in Computer Science, vol 5701, Springer

Decker G (2009) Design and Analysis of Process Choreographies. PhD thesis, Hasso
Plattner Institut, University of Potsdam

Decker G, Barros AP (2007) Interaction Modeling Using BPMN. In: ter Hofstede
et al. (2008), pp 208–219

Decker G, Mendling J (2009) Process Instantiation. Data Knowl Eng 68(9):777–792
Decker G, Weske M (2007) Behavioral Consistency for B2B Process Integration. In:

Krogstie et al. (2007), pp 81–95
Decker G, Weske M (2011) Interaction-centric Modeling of Process Choreographies.

Inf Syst 36(2):292–312
Decker G, Zaha JM, Dumas M (2006) Execution semantics for service choreogra-

phies. In: Bravetti et al. (2006), pp 163–177
Dehnert J, Rittgen P (2001) Relaxed Soundness of Business Processes. In: Dittrich

K, Geppert A, Norrie (eds) Proceedings of the 13th International Conference on
Advanced Information Systems Engineering (CAiSE), Springer, Lecture Notes
in Computer Science, vol 2068, pp 157–170

Desel J, Pernici B, Weske M (eds) (2004) Business Process Management: Second
International Conference, BPM 2004, Potsdam, Germany, June 17–18, 2004.
Proceedings, Lecture Notes in Computer Science, vol 3080, Springer

Dijkman RM, Hofstetter J, Koehler J (eds) (2011) Business Process Model and No-
tation – Third International Workshop, BPMN 2011, Lecture Notes in Business
Information Processing, vol 95, Springer

Dijkstra EW (1982) EWD 447: On the Role of Scientific Thought. In: Selected
Writings on Computing: A Personal Perspective, Springer-Verlag

Dubray JJ, Amand SS, Martin MJ (2006) ebXML Business Process Specification
Schema Technical Specification v2.0.4. OASIS

Dumas M, van der Aalst W, ter Hofstede AH (eds) (2005) Process Aware Informa-
tion Systems: Bridging People and Software through Process Technology. John
Wiley & Sons

Dumas M, Spork M, Wang K (2006) Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In: Business Process Management, Springer,
Lecture Notes in Computer Science, vol 4102, pp 65–80

Dumas M, Reichert M, Shan MC (eds) (2008) Business Process Management, 6th
International Conference, BPM 2008, Lecture Notes in Computer Science, vol
5240, Springer

392 References

Dustdar S, Fiadeiro JL, Sheth A (eds) (2006) Proceedings of the Fourth Interna-
tional Conference on Business Process Management, no. 4102 in Lecture Notes
in Computer Science, Springer, Heidelberg

Ellis CA, Bernal M (1982) OfficeTalk-D: An Experimental Office Information Sys-
tem. In: Proceedings of the SIGOA conference on Office Information Systems,
ACM Press, New York, NY, USA, pp 131–140

Forst A, Kühn e, Bukhres O (1995) General Purpose Work Flow Languages. Dis-
tributed and Parallel Databases 3(2):187–218

Füermann T, Dammasch C (2008) Process Management: Roadmap to Continuous
Process Improvement (in German). Hanser

Georgakopoulos D, Hornick MF, Sheth AP (1995) An Overview of Workflow Man-
agement: From Process Modeling to Workflow Automation Infrastructure. Dis-
tributed and Parallel Databases 3(2):119–153

Georgakopoulos D, Prinz W, Wolf A (eds) (1999) Proceedings of the International
joint Conference on Work Activities Coordination and Collaboration 1999, San
Francisco, California, USA, February 22-25, 1999, ACM

Gfeller B, Völzer H, Wilmsmann G (2011) Faster or-join enactment for bpmn 2.0.
In: Dijkman et al. (2011), pp 31–43

Girault C, Valk R (2010) Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer

van Glabbeek R, Weijland W (1996) Branching Time and Abstraction in Bisimula-
tion Semantics. Journal of the ACM 43(3):555–600

Grefen P, Aberer K, Hoffner Y, Ludwig H (2000) CrossFlow: Cross-Organizational
Workflow Management in Dynamic Virtual Enterprises. International Journal
of Computer Systems Science & Engineering 15:277–290

Gruber T (1993) A Translation Approach to Portable Ontologies. Knowledge Ac-
quisition 5(2):199–220

Gudgin M, Hadley M, Mendelsohn N, Moreau JJ, Nielsen HF, Karmarkar A, Lafon
Y (2007) SOAP Version 1.2. http://www.w3.org/TR/soap

Hammer M, Champy J (1993) Reengineering the Corporation: A Manifesto for Busi-
ness Revolution. Harper Business

Havey M (2005) Essential Business Process Modeling. O’Reilly Media
Henning M, Vinoski S (1999) Advanced CORBA Programming with C++. Profes-

sional Computing Series, Addison-Wesley
Hidders J, Dumas M, van der Aalst W, ter Hofstede AH, Verelst J (2005) When Are

TwoWorkflows the Same? In: Proceedings 11th Australasian Theory Symposium
(CATS 2005), Newcastle, Australia

ter Hofstede AHM, Benatallah B, Paik HY (eds) (2008) Business Process Manage-
ment Workshops, Lecture Notes in Computer Science, vol 4928, Springer

ter Hofstede AHM, van der Aalst WMP, Adams M, Russell N (eds) (2010) Modern
Business Process Automation – YAWL and its Support Environment. Springer

Hollingsworth D (1995) The Workflow Reference Model. Tech. Rep. Document Num-
ber TC00-1003, Workflow Management Coalition

Hull R, Mendling J, Tai S (eds) (2010) Business Process Management – 8th Inter-
national Conference, BPM 2010, Lecture Notes in Computer Science, vol 6336,
Springer

Jablonski S (1997) Architecture of Workflow Management Systems (in German).
Informatik Forschung und Entwicklung 12(2):72–81

http://www.w3.org/TR/soap

References 393

Jensen K, van der Aalst WMP (eds) (2009) Transactions on Petri Nets and Other
Models of Concurrency II, Special Issue on Concurrency in Process-Aware In-
formation Systems, Lecture Notes in Computer Science, vol 5460, Springer

Jensen K, Kristensen LM (2009) Coloured Petri Nets – Modelling and Validation of
Concurrent Systems. Springer

Kindler E (2004) On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In: Desel et al. (2004), pp 82–97

Kosiol E (1962) Organization of the Corporation (in German). Gabler, Wiesbaden
Krogstie J, Opdahl AL, Sindre G (eds) (2007) Advanced Information Systems Engi-

neering, 19th International Conference, CAiSE 2007, Trondheim, Norway, June
11–15, 2007, Proceedings, Lecture Notes in Computer Science, vol 4495, Springer

Kunze M, Luebbe A, Weidlich M, Weske M (2011) Towards Understanding Process
Modeling – The Case of the BPM Academic Initiative. In: Dijkman et al. (2011),
pp 44–58

Kuropka D, Bog A, Weske M (2006) Semantic Enterprise Services Platform: Mo-
tivation, Potential, Functionality and Application Scenario. In: Proceedings of
the tenth IEEE international EDOC Enterprise Computing Conference. Hong
Kong, October 2006, pp 253–261

Kuropka D, Tröger P, Staab S, Weske M (eds) (2008) Semantic Service Provisioning.
Springer

Küster JM, Ryndina K, Gall H (2007) Generation of business process models for
object life cycle compliance. In: Alonso et al. (2007), pp 165–181

Lamport L (1978) Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):558–565

Leymann F, Altenhuber W (1994) Managing Business Processes as Information
Resources. IBM Systems Journal 33(2):326–348

Leymann F, Roller D (1997) Workflow-based Applications. IBM Systems Journal
36(1):102–123

Leymann F, Roller D (1999) Production Workflow: Concepts and Techniques. Pear-
son Education

Leymann F, Roller D, Schmidt MT (2002) Web Services and Business Process Man-
agement. IBM Systems Journal 41(2):198–211

Lohmann N, Wolf K (2010) How to Implement a Theory of Correctness in the Area
of Business Processes and Services. In: Hull et al. (2010), pp 61–77

Lohmann N, Massuthe P, Stahl C, Weinberg D (2006) Analyzing Interacting BPEL
Processes. In: Business Process Management, Springer, Lecture Notes in Com-
puter Science, vol 4102, pp 17–32

Ly LT, Rinderle S, Dadam P (2006) Semantic Correctness in Adaptive Process Man-
agement Systems. In: Business Process Management, Springer, Lecture Notes in
Computer Science, vol 4102, pp 193–208

Mansar SL, Reijers HA (2005) Best practices in business process redesign: validation
of a redesign framework. Computers in Industry 56(5):457–471

Martens A (2003a) On Compatibility of Web Services. In: 10th Workshop on Algo-
rithms and Tools for Petri Nets (AWPN 2003), Eichstätt, Germany

Martens A (2003b) On Usability of Web Services. In: Calero C, Daz O, Piattini M
(eds) Proceedings of 1st Web Services Quality Workshop

Martens A (2005a) Analyzing Web Service based Business Processes. In: Cerioli
M (ed) Proceedings of Intl. Conference on Fundamental Approaches to Software
Engineering (FASE’05), Part of the 2005 European Joint Conferences on Theory

394 References

and Practice of Software (ETAPS’05), Springer-Verlag, Edinburgh, Scotland,
Lecture Notes in Computer Science, vol 3442

Martens A (2005b) Consistency between Executable and Abstract Processes. In:
Proceedings IEEE International Conference on e-Technology, e-Commerce, and
e-Services (EEE 2005), IEEE Computer Society, Hong Kong, China, pp 60–67

Massuthe P, Schmidt K (2005) Operating Guidelines – an Automata-Theoretic
Foundation for the Service-Oriented Architecture. In: Proceedings Fifth Inter-
national Conference on Quality Software (QSIC 2005), IEEE Computer Society,
Washington, DC, USA, pp 452–457

Massuthe P, Reisig W, Schmidt K (2005) An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3):35–43

McGuinness FE D; van Harmelen (2004) OWL Web Ontology Language Overview.
Tech. rep., Web Ontology Working Group at the World Wide Web Consortium
(W3C)

Medeiros CB, Vossen G, Weske M (1995) WASA: A Workflow-Based Architecture to
Support Scientific Database Applications (Extended Abstract). In: Revell and
Tjoa (1995), pp 574–583

Mendling J, van der Aalst W (2007) Formalization and Verification of EPCs with
OR-Joins Based on State and Context. In: Krogstie et al. (2007), pp 439–453

Mendling J, Weidlich M, Weske M (eds) (2011) Business Process Modeling Nota-
tion – Second International Workshop, BPMN 2010, Lecture Notes in Business
Information Processing, vol 67, Springer

Meyer H, Weske M (2006) Automated Service Composition Using Heuristic Search.
In: Business Process Management, Springer, Lecture Notes in Computer Science,
vol 4102, pp 81–96

Meyer R, Menzel C, Painter M, de Witte P, Blinn T, Perakath B (1995) Informa-
tion Integration for Concurrent Engineering IDEF3 Process Description Capture
Method Report. Tech. rep., Knowledge Based Systems, Inc.

Mohan (2002) Dynamic E-business: Trends in Web Services. In: Buchmann A, Casati
F, Fiege L, Hsu MC, Shan MC (eds) Proceedings of the third VLDB workshop
on Technologies for E-Services, vol 2444 Springer Lecture Notes in Computer
Science, pp 1–5

Mutschler B, Reichert M, Bumiller J (2008) Unleashing the effectiveness of process-
oriented information systems: Problem analysis, critical success factors, and
implications. IEEE Transactions on Systems, Man, and Cybernetics, Part C
38(3):280–291

Nagarajan M, Verma K, Sheth AP, Miller J, Lathem J (2006) Semantic interoper-
ability of web services – challenges and experiences. In: ICWS ’06: Proceedings
of the IEEE International Conference on Web Services (ICWS’06), IEEE Com-
puter Society, Washington, DC, USA, pp 373–382

Newcomer E, Lomow G (2005) Understanding SOA with Web Services. Addison
Wesley

Nordsieck F (1932) The Figurative Collection and Investigation of the Operational
Organization (in German). C. E. Poeschel, Stuttgart

Oasis (2007) Web Services Business Process Execution Language Version 2.0. OASIS
Standard

Object Management Group (2011) Business Process Model and Notation (BPMN)
Version 2.0. formal/2011-01-03 edn

References 395

O’Neil P, O’Neil E (2000) Database: Principles, Programming, and Performance,
2nd edn. Elsevier Science & Technology Books

Parnas DL (1972) On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12):1053–1058

Petri CA (1962) Communication with Automata (in German). PhD thesis, Univer-
sität Bonn, Institut für Instrumentelle Mathematik, Schriften IIM Nr.2

Porter ME (1998) Competitive Advantage. Free Press
Puhlmann F (2007) On the Application of a Theory for Mobile Systems to Busi-

ness Process Management. PhD thesis, Hasso Plattner Institute for IT Systems
Engineering at the University of Potsdam

Puhlmann F, Weske M (2006a) Interaction Soundness for Service Orchestrations. In:
Dan A, Lamersdorf W (eds) Proceedings of the 4th International Conference on
Service Oriented Computing (ICSOC 2006), Springer Verlag, LNCS, vol 4294,
pp 302–313

Puhlmann F, Weske M (2006b) Investigations on Soundness Regarding Lazy Activ-
ities. In: Business Process Management, Springer, Lecture Notes in Computer
Science, vol 4102, pp 145–160

Pulier E, Taylor H (2006) Understanding Enterprise SOA. Manning
Ramakrishnan R, Gehrke J (2002) Database Management Systems, 3rd edn.

McGraw-Hill
Reichert M, Dadam P (1998) ADEPTflex-Supporting Dynamic Changes of Work-

flows Without Losing Control. J Intell Inf Syst 10(2):93–129
Reichert M, Rinderle-Ma S, Dadam P (2009) Flexibility in Process-Aware Informa-

tion Systems. In: Jensen and van der Aalst (2009), pp 115–135
Reijers HA (2005) Process Design and Redesign, chap 9. In: Dumas et al. (2005)
Reijers HA, Rigter JHM, van der Aalst W (2003) The Case Handling Case. Int J

Cooperative Inf Syst 12(3):365–391
Revell N, Tjoa AM (eds) (1995) Database and Expert Systems Applications, 6th

International Conference, DEXA’95, London, United Kingdom, September 4–8,
1995, Proceedings, Lecture Notes in Computer Science, vol 978, Springer

Rinderle S, Reichert M, Dadam P (2003) Evaluation of Correctness Criteria for
Dynamic Workflow Changes. In: van der Aalst W, ter Hofstede AHM, Weske
M (eds) Business Process Management, Springer, Lecture Notes in Computer
Science, vol 2678, pp 41–57

Rinderle S, Reichert M, Dadam P (2004) On Dealing with Structural Conflicts
between Process Type and Instance Changes. In: Desel et al. (2004), pp 274–289

Rinderle-Ma S, Toumani F, Wolf K (eds) (2011) Business Process Management –
9th International Conference, BPM 2011, Clermont-Ferrand, France, August 30
– September 2, 2011. Proceedings, Lecture Notes in Computer Science, vol 6896,
Springer

Russell N, van der Aalst W, ter Hofstede AHM, Edmond D (2005) Workflow Re-
source Patterns: Identification, Representation and Tool Support. In: CAiSE, pp
216–232

Russell N, ter Hofstede A, van der Aalst W, Mulyar N (2006) Workflow Control-
Flow Patterns: A Revised View. Tech. Rep. BPM Center Report BPM-06-22,
BPMcenter.org

Scheer AW (2000) ARIS – Business Process Frameworks, 3rd edn. Springer
Scheer AW, Kirchmer M, Abolhassan F, Jost W (eds) (2004) Business Process Au-

tomation. Springer

396 References

Scheer AW, Thomas O, Adam O (2005) Process Aware Information Systems: Bridg-
ing People and Software through Process Technology, chap Process Modeling
Using Event-Driven Process Chains, pp 119–145. In: Dumas et al. (2005)

Schmelzer H, Sesselmann W (2010) Practical Use of Business Process Management
(in German), 7th edn. Hanser

Siegeris J, Zimmermann A (2006) Workflow Model Compositions Preserving Re-
laxed Soundness. In: Business Process Management, Springer, Lecture Notes in
Computer Science, vol 4102, pp 177–192

Silberschatz A, Galvin PB (2008) Operating System Concepts, 8th edn. Addison-
Wesley

Silver B (2011) BPMN Method and Style, 2nd edn. Cody-Cassidy Press
Smith H, Fingar P (2006) Business Process Management: The Third Wave. Meghan-

Kiffer Press
Stallings W (2004) Operating Systems. Prentice Hall
Swenson KD (ed) (2010) Mastering the Unpredictable: How Adaptive Case Man-

agement will revolutionize the way that knowledge workers get things done.
Meghan-Kiffer

Tanenbaum AS (2007) Modern Operating Systems, 3rd edn. Prentice-Hall, Interna-
tional

Taylor FW (1967) The Principle of Scientific Management. Norton & Company
Verbeek H, Basten T, van der Aalst W (2001) Diagnosing Workflow Processes using

Woflan. The Computer Journal 44(4):246–279
Verma K, Doshi P, Gomadam K, Miller J, Sheth A (2006) Optimal Adaptation in

Web Processes with Coordination Constraints. In: ICWS ’06: Proceedings of the
IEEE International Conference on Web Services (ICWS’06), IEEE Computer
Society, Washington, DC, USA, pp 257–264

Weber B, Rinderle S, Reichert M (2007) Change Patterns and Change Support
Features in Process-Aware Information Systems. In: Krogstie et al. (2007), pp
574–588

Weidlich M (2011) Behavioural Profiles: A Relational Approach to Behavioral Con-
sistency. PhD thesis, Hasso Plattner Institut at the University of Potsdam

Weidlich M, Mendling J, Weske M (2011) Efficient Consistency Measurement Based
on Behavioral Profiles of Process Models. IEEE Trans Software Eng 37(3):410–
429

Weikum G, Vossen G (2001) Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. Elsevier Science
& Technology Books

Weske M (1998) Formal Foundation and Conceptual Design of Dynamic Adaptations
in a Workflow Management System. In: Sprague (ed) Proceedings of the Thirty-
Fourth Annual Hawaii International Conference on System Science (HICSS-34)
Minitrack Internet and Workflow Automation: Technical and Managerial Issues,
IEEE Computer Society Press

Weske M (2000) Workflow Management Systems: Formal Foundation, Conceptual
Design, Implementation Aspects. Habilitation Thesis, University of Münster

Weske M, Goesmann T, Holten R, Striemer R (2001) Analysing, modelling and
improving workflow application development processes. Software Process: Im-
provement and Practice 6(1):35–46

References 397

Weske M, Vossen G, Puhlmann F (2005) Workflow and Service Composition Lan-
guages. In: Bernus P, Mertins K, Schmidt G (eds) Handbook on Architectures
of Information Systems, Springer, Berlin, pp 369–390

Woods D, Mattern T (2006) Enterprise SOA – Designing IT for Business Innovation.
O’Reilly

Workflow Management Coalition (2005) Process Definition Interface – XML Process
Definition Language. Document Number WFMC-TC-1025

Zaha JM, Barros A, Dumas M, ter Hofstede A (2006a) Let’s Dance: A Language for
Service Behavior Modeling. In: Proceedings 14th International Conference on
Cooperative Information Systems (CoopIS 2006), Springer Verlag, Montpellier,
France

Zaha JM, Dumas M, ter Hofstede A, Barros A, Decker G (2006b) Service Inter-
action Modeling: Bridging Global and Local Views. In: Proceedings 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong

Index

Abstract Process, 347
Abstraction Concepts, 75

Horizontal Abstraction, 75
Vertical Abstraction, 77

Activity
Implementation, 81
Instance, 83, 85, 86
Model, 83
State Transition Diagram, 84, 126

Activity Instance
Definition, 86

Activity Model
Definition, 86

Adhoc
Process, 214

Applications
Composite, 61

Arbitrary Cycles, 138
Architecture

Advanced Service Composition, 352
Workflow Management, 333

ARIS Business Process Framework, 159

Behavioural Interface, 253, 262
Compatibility, 255

Branching Bisimulation, 264
Business Activity, 81
Business Function, 78, 81
Business Process, 81

Adhoc, 20
Classification, 17
Conceptual Model, 74
Definition, 5

Flexibility, 21

Implemented, 17

Landscape, 47

Lifecycle, 11

Operational, 17

Organizational, 17

Relations Between, 81

Stakeholders, 15

Business Process Execution Language
for Web Services, 346

Business Process Instance

Definition, 7

Business Process Management

Architecture, 120

Architectures, 333

Definition, 5

Flexibility, 111

Goals, 21

Landscape, 65

Methodology, 373

Modelling Subdomains, 77

Business Process Management System

Definition, 6

Business Process Methodology, 376

Business Process Model

Definition, 7

Business Process Model and Notation,
6, 90, 206

Activities, 212

Activity Markers, 213

Adhoc Activities, 214

Adhoc Process, 214

Artefacts, 209

M. Weske, Business Process Management,
DOI 10.1007/978-3-642-28616-2,
© Springer-Verlag Berlin Heidelberg 2012

399

http://dx.doi.org/10.1007/978-3-642-28616-2

400 Index

Boundary Events, 219, 220
Business Process Diagrams, 208
Business Rule Task, 215
Call Activities, 213
Call Activity, 213
Catching Events, 218
Categories of Elements, 209
Characterization, 206
Choreographies, 279
Choreography Diagrams, 281
Choreography Gateways, 285
Choreography Modeling Conformance

Class, 207
Choreography Tasks, 282
Collaborating Processes, 236
Compensation Task, 216
Condition Expressions, 210, 226, 232
Conformance Classes, 206
Conversation Diagrams, 280
Data Objects, 209, 230
Enforceability, 284
Event Types, 216
Event-based Gateway, 228
Events, 216
Gateways, 224, 225
Inclusive Gateway, 229
Input Sets, 233
Instantiation, 234
Manual Task, 215
Message Flow, 237, 238
Multiple Instances Activities, 214
Multiple Instances Pools, 240
Normal Flow, 225
Principles, 207
Process Execution Conformance

Class, 207
Process Modeling Conformance Class,

207
Process Orchestration, 206
Sequence Flow, 224
Service Interaction Patterns, 268
Service Task, 215
Subprocesses, 212
Task Types, 214, 215
Throwing Events, 218
Transactions, 222, 223
Uncontrolled Flow, 227
User Task, 215

Business Process Modelling

Data Model, 77
Functional Model, 77
IT Landscape Model, 77
Organizational Model, 77
Process Model, 77

Business Processes
Interactions, 275

Business-to-Business Processes, 8, 48,
243, 314

Case Handling, 20, 361
Data Dependencies, 365
Metamodel, 365

Choreography Enforceability, 284
Collaborating Processes, 236
Coloured Petri Net, 156, 157
Composite Applications, 61
Conceptual Model

Activities, 83
Case Handling, 365
Organization, 102
Process Instances, 92
Process Metamodel, 89
Process Models, 89

Condition Event Net, 152
Definition, 153

Customer Relationship Management, 31

Data
Dependency, 296
Integration, 29, 356
Modelling, 98
Object Lifecycle, 297

Database Management Systems, 27
Deferred Choice, 144, 228
Discriminator, 135

Enterprise Application Integration, 32
Hub-and-Spoke Architecture, 35
Message-Oriented Middleware, 35
Point-to-Point Integration, 33
Service Composition, 349

Enterprise Applications, 28, 31
Enterprise Architectures, 31
Enterprise Modelling, 39
Enterprise Resource Planning, 29
Enterprise Service Bus, 63
Enterprise Services, 59

Architecture, 62

Index 401

Drivers, 60
Enterprise Systems Architectures, 25
Entity Relationship Diagram, 99
Event Diagram, 86
Event-Driven Process Chain, 159

Building Blocks, 161
Connectors, 163
Definition, 162
Example, 164
Function Flow, 167
Interaction Flow, 166
Interaction Flow Diagram, 166
Or Join, 169
Syntax Rules, 163, 164

Event-driven Process Chain
Translation to Petri Net, 309

Event-Driven Process Chains
Conditions, 359

Free Choice Net, 307
Functional Decomposition, 79, 82

Goals, 17
Graph-Based Workflow Language, 200

Discussion, 205
Process Instances, 204
Process Metamodel, 202

Graphical User Interfaces, 28

Human Interaction Workflow, 53

Implicit Termination, 140
Inbound Logistics, 42
Information Hiding, 25
Integration Challenges, 56
Interactions

Elementary, 275
Intraorganizational Business Process,

18

Key Performance Indicators, 382
Knowledge Worker, 55

Lazy Soundness, 318
Definition, 324, 325
Discriminator, 320
Multiple Instances without Synchro-

nization, 323
N-out-of-M Join, 322

Let’s Dance, 275

Advanced Control Flow, 278
Inhibits Relationship, 277
Interactions, 275
Relating Interactions, 276
Weak Precedes Relationship, 277

Livelock, 228
Logical Data Independence, 27

Marketing and Sales, 43
Message Broker, 37
Message Flow, 237, 238
Methodology, 373, 376

Design, 380
Key Performance Indicators, 382
Measuring Processes, 384
Operation and Controlling, 386
Overview, 376
Platform Selection, 383
Process Implementation, 383
Process Landscape Design, 378
Strategy and Organization, 378
Supplier-Consumer Relationship, 373
Test and Deployment, 385

Milestone Pattern, 146
Motivation, 4
Multiple Instances Patterns, 140–144
Multiple Merge, 133

N-out-of-M Join, 137

Object Lifecycle, 296
Conformance, 298
Definition, 296

Object Lifecycle Conformance, 296
Ontology, 356

Domain Ontology, 356
Operating Systems, 26
Organization

Modelling, 102
Organizational Business Processes,

43–45
Outbound Logistics, 43

Petri Net, 149
Coloured Petri Net, 157
Definition, 151
Free Choice Net, 307
Marking, 151
Place Transition Net, 154

402 Index

Reachability, 152, 303
Transition Firing, 152

Physical Data Independence, 27
Place Transition Net, 154

Definition, 154
Precedes Relationship, 277
Process Choreographies

Behavioural Interface, 253
Behavioural Interfaces, 262
Behavioural Model, 251
Characterization, 243
Collaboration Scenario, 251
Compatibility, 254
Consistency, 262
Deadlock, 244
Design, 248, 249
Development Phases, 247
Example, 10
Implementation, 249, 260
Interaction Models, 246
Let’s Dance, 275
Levels of Abstraction, 245
Metamodel, 246
Process Conversations, 246
Terminology, 244

Process Choreography, 9
Process Instance, 87, 92

Definition, 95
Process Instantiation, 234
Process Interactions, 96
Process Model, 87, 88

Definition, 91
Process Orchestration, 8, 125

Workflow Control Flow Patterns, 126
Process Orientation, Taylorism, 44
Process Properties, 293

Data Dependencies, 294
Production Workflow, 20
Public-to-Private Approach, 263

Branching Bisimulation, 264
Consistency Criterion, 264
Transformation Operations, 264

Relaxed Soundness, 308
Motivation, 308

Roles
Authorization, 106
Case Handling, 106, 368
Deferred Allocation, 105

Direct Allocation, 104
History-Based Allocation, 106
Organizational Allocation, 107
Role-Based Allocation, 105
Separation of Duties, 106

Run Time Patterns, 147

Separation of Concerns, 25
Sequence Pattern, 126
Sequential Execution without A Priori

Runtime Knowledge, 146
Service

Definition, Service-Oriented Architec-
ture

Definition, 58
Service Binding, 354
Service Composition, 64

Advanced Concepts, 352
Service Interaction Patterns

Characterization, 267
Service Matchmaking, 354
Service-Oriented Architecture

Burbeck’s Definition, 58
Service-Oriented Architectures, 58

Composed Services, 110
Dynamic Binding, 354
Repository, 120
Roles, 59
Service-Enabling, 109

Service-oriented Architectures
Service-Enabling, 350

Service-Oriented Architectures
Static Binding, 354

Siloed Applications, 32
Software Architecture

Definition, 26
Software Architectures, 333

Interface Definition Languages, 108
Soundness, 300

Criteria Overview, 326
Definition, 302
Lazy Soundness, 318, 324, 325
Motivation, 300
Relaxed Soundness, 308, 313
Sound Firing Sequence, 313
Structural, 299, 300
Theorem, 305
Weak Soundness, 313

Strategy, 17

Index 403

Supplier-Consumer Relationship, 373
Supply Chain Management, 31
System Workflow, 51, 64
Systems Architectures

Business Process Management
Architectures, 120

Enterprise Application Integration,
349

Flexible Workflow Management, 338
Service Composition, 346, 349
Service-Oriented Architecture, 343
Web Services, 343
WfMC Reference Architecture, 336

Value Chain, 39, 48, 78, 81
Primary Functions, 42
Support Functions, 42

Value Chain Operations, 43
Value Chain Services, 43
Value System, 39, 81

Weak Soundness
Definition, 314

Web Services, 343
Composition, 346
Service-Enabling, 350
Web Services Description Language,

345
Work Item, 104

State Transition Diagram, 104
Workflow

Adhoc Workflow, 214
Build Time, 334
Definition, 50
Embedded Workflow, 50
Human Interaction Workflow, 53, 107
Multiple-application Workflow, 50
Run Time, 334
Single-application Workflow, 50
System Workflow, 52, 107

Workflow Control Flow Patterns, 126
Critical Control Flow Patterns, 319
Discriminator, 320

Multiple Instances without Synchro-
nization, 323

N-out-of-M Join, 322
Workflow Management, 49

Challenges, 55
Flexible Workflow Management, 338
Systems Architectures, 335

Workflow Management System
Definition, 50

Workflow Module
Compatibility, 258
Composition, 256
Definition, 256

Workflow Net, 169
Characterization, 169
Control Flow, 171
Definition, 171
Evaluation, 180
Exclusive Or, 174
Free Choice, 307
Process Instances, 179
Syntactic Sugaring, 174
Triggers, 175, 177

Workflows Flexibility
Dynamic Adaptations, 341

Yet Another Workflow Language, 182
Advanced Control Flow Patterns, 194
Cancellation, 184
Characterization, 182
Composite Tasks, 193
Discussion, 199
Execution Semantics, 187
Extended Condition Set, 191
Extended Flow Relation Set, 191
Multiple Instances, 184, 188
Multiple Instances Tasks, 197
Nested Processes, 193
Notation, 185
State Transition Diagram, 187
YAWL Net, 183
YAWL Specification, 184

	Business Process Management
	Foreword
	Preface to Second Edition
	Preface
	Contents

	Part I Foundation
	1 Introduction
	1.1 Motivation and Definitions
	1.2 Business Process Lifecycle
	Design and Analysis
	Configuration
	Enactment
	Evaluation
	Administration and Stakeholders

	1.3 Classification of Business Processes
	Organizational versus Operational
	Intraorganizational Processes versus Process Choreographies
	Degree of Automation
	Degree of Repetition
	Degree of Structuring

	1.4 Goals, Structure, and Organization

	Part II Business Process Modelling
	2 Evolution of Enterprise Systems Architectures
	3 Business Process Modelling Foundation
	4 Process Orchestrations
	5 Process Choreographies
	Part III Architectures and Methodologies
	6 Properties of Business Processes
	7 Business Process Management Architectures
	8 Business Process Management Methodology
	8.1 Dependencies between Processes
	8.2 Methodology Overview
	8.3 Phases in Detail
	8.3.1 Strategy and Organization
	8.3.2 Process Landscape Design
	8.3.3 Process Design
	8.3.4 Process Implementation
	8.3.5 Operations and Controlling

	Bibliographical Notes

	References
	Index

